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ABSTRACT
This paper introduces a web image dataset created by NUS’s
Lab for Media Search. The dataset includes: (1) 269,648 im-
ages and the associated tags from Flickr, with a total of 5,018
unique tags; (2) six types of low-level features extracted from
these images, including 64-D color histogram, 144-D color
correlogram, 73-D edge direction histogram, 128-D wavelet
texture, 225-D block-wise color moments extracted over 5×5
fixed grid partitions, and 500-D bag of words based on SIFT
descriptions; and (3) ground-truth for 81 concepts that can
be used for evaluation. Based on this dataset, we highlight
characteristics of Web image collections and identify four
research issues on web image annotation and retrieval. We
also provide the baseline results for web image annotation
by learning from the tags using the traditional k -NN algo-
rithm. The benchmark results indicate that it is possible to
learn effective models from sufficiently large image dataset
to facilitate general image retrieval.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Image databases; H.3.1
[Information Storage and Retrieval]: Content Analysis
and Indexing.

General Terms
Experimentation, Performance, Standardization.

Keywords
Web Image, Flickr, Retrieval, Annotation, Tag Refinement,
Training Set Construction.

1. INTRODUCTION
Digital images have become more easily accessible follow-

ing the rapid advances in digital photography, networking
and storage technologies. Some photo sharing websites, such
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as Flickr1 and Picasa2, are popular in daily life. For exam-
ple, there are more than 2,000 images being uploaded to
Flickr every minute. During peak times, up to 12,000 im-
ages are being served per second, and the record for the
number of images uploaded per day exceeds 2 million im-
ages [3]. When users share their images, they typically give
several tags to describe the contents of their images. Out
of these archives, several questions naturally arise for multi-
media research. For example, what can we do with millions
of images and their associated tags? How can general im-
age indexing and search benefit from the community shared
images and tags?

In fact, how to improve the performance of existing im-
age annotation and retrieval approaches by using machine
learning and other artificial intelligent technologies has at-
tracted much attention in multimedia research community.
However, for learning based methods to be effective, a large
number of balanced labeled samples is required, which typi-
cally comes from users during an interactive manual process.
This is very time-consuming and labor-intensive. In order to
reduce this manual effort, many semi-supervised learning or
active learning approaches have been proposed. Neverthe-
less, there is still a need to manually annotate many images
to train the learning models. On the other hand, the image
sharing sites offer us great opportunity to “freely” acquire a
large number of images with annotated tags. The tags for
the images are collectively annotated by a large group of
heterogeneous users. It is believed that although most tags
are correct, there are many noisy and missing tags. Thus
if we can learn the accurate models from these user-shared
images together with their associated noisy tags, then much
manual effort in image annotation can be eliminated. In
this case, content-based image annotation and retrieval can
benefit much from the community contributed images and
tags.

In this paper, we present four research issues on mining
the community contributed images and tags for image anno-
tation and retrieval. The issues are: (1) How to utilize the
community contributed images and tags to annotate non-
tagged images. (2) How to leverage the models learned from
these images and associated tags to improve the retrieval of
web images with tags or surrounding text. (3) How to ensure
tag completion which means the removal of the noise in the
tag set and the enrichment of missing tags. (4) How to con-
struct effective training set for each concept and the overall
concept network from the available information sources. To

1http://www.flickr.com/
2http://picasa.google.com/



Figure 1: The frequency distribution of tags, the
vertical axis indicates the tag frequency with double-
log scale.

Figure 2: The number of tags per image

these ends, we construct a benchmark dataset to focus re-
search efforts on these issues. The dataset includes a set of
images crawled from Flickr, together with their associated
tags, as well as the ground-truth for 81 concepts for these
images. We also extract six low-level visual features, includ-
ing 64-D color histogram in LAB color space, 144-D color
correlogram in HSV color space, 73-D edge distribution his-
togram, 128-D wavelet texture, 225-D block-wise LAB-based
color moments extracted over 5×5 fixed grid partitions, and
500-D bag of visual words. For the image annotation task,
we also provide a baseline using the k -NN algorithm. The
set of low-level features for images, their associated tags,
ground-truth, and the baseline results can be downloaded
at http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

To our knowledge, this is the largest real-world web im-
age dataset comprising over 269,000 images with over 5,000
user-provided tags, and ground-truth of 81 concepts for the
entire dataset. The dataset is much larger than the popu-
larly available Corel [2] and Caltech 101 [4] datasets. While
some research efforts have been reported [20][19] on much
large image dataset of over 3-million images, these works
are largely text-based and the datasets contain ground-truth

Table 1: The set of most frequent tags after noise
removal

nature 20142 sunset 10962
sky 18935 light 10869
blue 17822 white 10082
water 17646 people 9324
clouds 14201 sea 9016
red 13172 night 8806
green 13169 art 8759
bravo 12003 architecture 8589
landscape 11667 yellow 8191
explore 11144 portrait 8139

for only a small fraction of images for visual annotation and
retrieval experiments.

The rest of the paper is organized as follows. Section 2
introduces the crawled images and tags from Flickr and how
we pre-process them, including the removal of duplicate im-
ages and useless tags. Section 3 describes the extraction
of the low-level features for images. Section 4 introduces
the definitions of the 81 concepts for evaluation and how we
manually annotate the ground-truth. The levels of noise in
different tags are analyzed in Section 5. In Section 6, we
describe the definitions of four research challenges for web
image annotation and retrieval, and present the benchmark
results. Finally, Section 7 contains the conclusion and dis-
cussion for future work.

2. IMAGES AND TAGS
We randomly crawled more than 300,000 images together

with their tags from the image sharing site Flickr.com through
its public API. The images whose sizes are too small or with
inappropriate length-width ratios are removed. Also we re-
move many duplicate images according to feature matching.
The remaining set contains 269,648 images with a total of
425,059 unique tags. Figure 1 illustrates the distribution of
the frequencies of tags in the dataset; while Figure 2 shows
the distribution of the number of tags per image. Among all
the unique tags, there are 9,325 tags that appear more than
100 times. Many of these unique tags arise from spelling
errors, while some of them are names etc., which are mean-
ingless for general image annotation or indexing. We thus
check all these 9,325 unique tags against the WordNet, and
remove those tags that do not exist in the WordNet. At the
end, we are left with a tag list of 5,018 unique tags, which
can be found at http://lms.comp.nus.edu.sg/research/NUS-
WIDE.htm. Table 1 gives the top 20 most frequent tags
together with their frequencies after noise removal.

A key issue in image annotation and indexing is the cor-
relations among the semantic concepts. The semantic con-
cepts do not exist in isolation. Instead, they appear correla-
tively and interact naturally with each other at the semantic
level. For example, the tag “sunset”often co-occurs with the
tag “sea” while “airplane” and “animal” generally do not co-
occur. Several research efforts have been done on how to ex-
ploit the semantic correlations to improve image and video
annotation [12][17]. For our scenario, the semantic correla-
tions can be easily obtained by computing the co-occurrence
matrix among the tags. We found that the co-occurrence
matrix is rather full, which indicates that there are closed
correlations among the 5,081 unique tags in our dataset.



3. LOW-LEVEL FEATURES
To facilitate experimentation and comparison of results,

we extract a set of effective and popularly used global and
local features for each image.

3.1 Global Features
Four sets of global features are extracted as follows:
A) 64-D color histogram (LAB) [14]: The color his-

togram serves as an effective representation of the color con-
tent of an image. It is defined as the distribution of the
number of pixels for each quantized bin. We adopt the LAB
color space to model the color image, where L is lightness
and A, B are color opponents. As LAB is a linear color
space, we therefore quantize each component of LAB color
space uniformly into four bins. Then the color histogram is
defined for each component as follows:

h(i) =
ni

N
i = 1, 2, . . . , K (1)

where ni is the number of pixels with value i, N is the total
number of pixels in the image, and K is the size of the
quantized bins (with K=4). The resulting color histogram
has a dimension of 64 (4×4×4).

B) 144-D color auto-correlogram (HSV) [6]: The
color auto-correlogram was proposed to characterize the color
distributions and the spatial correlation of pairs of colors
together. The first two dimensions of the three-dimensional
histogram are the colors of any pixel pair and the third di-
mension is their spatial distance. Let I represent the entire
set of image pixels and Ic(i) represent the subset of pixels
with color c(i), then the color auto-correlogram is defined
as:

r
(k)
i,j = Prp1∈Ic(i),p2∈I [p2 ∈ Ic(j)||p1 − p2| = d] (2)

where i, j ∈ {1, 2, . . . ,K}, d ∈ {1, 2, . . . , L} and |p1 − p2| is
the distance between pixels p1 and p2. Color auto-correlogram
only captures the spatial correlation between identical colors
and thus reduces the dimension from O(N2d) to O(Nd). We
quantize the HSV color components into 36 bins and set the
distance metric to four odd intervals of d = {1, 3, 5, 7}. Thus
the color auto-correlogram has a dimension of 144 (36×4).

C) 73-D edge direction histogram [11]: Edge direction
histogram encodes the distribution of the directions of edges.
It comprises a total of 73 bins, in which the first 72 bins are
the count of edges with directions quantized at five degrees
interval, and the last bin is the count of number of pixels that
do not contribute to an edge. To compensate for different
image sizes, we normalize the entries in histogram as follows:

Hi =

(
H(i)
Me

, if i ∈ [0, . . . , 71]
H(i)
M

, i = 72
(3)

where H(i) is the count of bin i in the edge direction his-
togram; Me is the total number of edge points detected in
the sub-block of an image; and M is the total number of
pixels in the sub-block. We use Canny filter to detect edge
points and Sobel operator to calculate the direction by the
gradient of each edge point.

D) 128-D wavelet texture [9]: The wavelet transform
provides a multi-resolution approach for texture analysis.
Essentially wavelet transform decomposes a signal with a
family of basis functions ψmn(x) obtained through transla-

tion and dilation of a mother wavelet ψ(x), i.e.,

ψmn(x) = 2−
m

2 ψ(2−m
x− n), (4)

where m and n are the dilation and translation parameters.
A signal f(x) can be represented as:

f(x) =
X
m,n

cmnψmn(x). (5)

Wavelet transform performed on image involves recursive
filtering and sub-sampling. At each level, the image is de-
composed into four frequency sub-bands, LL, LH, HL, and
HH, where L denotes the low frequency and H denotes the
high frequency. Two major types of wavelet transform often
used for texture analysis are the pyramid-structured wavelet
transform (PWT) and the tree-structured wavelet transform
(TWT). The PWT recursively decomposes the LL band. On
the other hand, the TWT decomposes other bands such as
LH, HL or HH for preserving the most important informa-
tion appears in the middle frequency channels.

After the decomposition, feature vectors can be constructed
using the mean and standard deviation of the energy distri-
bution of each sub-band at each level. For the three-level de-
composition, PWT results in a feature vector of 24 (3×4×2)
components. For TWT, the feature will depend on how the
sub-bands at each level are decomposed. A fixed decompo-
sition tree can be obtained by sequentially decomposing the
LL, LH, and HL bands, thus resulting in a feature vector of
104(52×2) components.

3.2 Grid-based Features
E) 225-D block-wise color moments (LAB) [16]: The

first (mean), the second (variance) and the third order (skew-
ness) color moments have been found to be efficient and
effective in representing the color distributions of images.
Mathematically, the first three moments are defined as:

µi =
1

N

NX
j=1

fij (6)

σi = (
1

N

NX
j=1

(fij − µi)
2)

1
2 (7)

si = (
1

N

NX
j=1

(fij − µi)
3)

1
3 (8)

where fij is the value of the i-th color component of the
image pixel j, and N is the total number of pixels in the
image.

Color moments offer a very compact representation of im-
age content as compared to other color features. For the use
of three color moments as described above, only nine com-
ponents (three color moments, each with three color com-
ponents) will be used. Due to this compactness, it may not
have good discrimination power. Thus for our dataset, we
extract the block-wise color moments over 5×5 fixed grid
partitions, giving rise to a block-wise color moments with a
dimension of 225.

3.3 Bag of Visual Words
F) 500-D bag of visual words [7]: The generation of

bag of visual words comprises three major steps: (a) we



apply the Difference of Gaussian filter on the gray scale im-
ages to detect a set of key-points and scales respectively; (b)
we compute the Scale Invariant Feature Transform (SIFT)
[7] over the local region defined by the key-point and scale;
and (c) we perform the vector quantization on SIFT region
descriptors to construct the visual vocabulary by exploiting
the k -means clustering. Here we generated 500 clusters, and
thus the dimension of the bag of visual words is 500.

4. GROUND-TRUTH FOR 81 CONCEPTS
To evaluate the effectiveness of research efforts conducted

on the dataset, we invited a group of students (called anno-
tators) with different backgrounds to manually annotate the
ground-truth for the 81 concepts, which are listed in Figure
3. The annotators come from several high schools and Na-
tional University of Singapore. The 81 concepts are carefully
chosen in such a way that: (a) they are consistent with those
concepts defined in many other literatures [2][4][10][15]; (b)
they mostly correspond to the frequent tags in Flickr; (c)
they have both general concepts such as “animal” and spe-
cific concepts such as “dog” and “flowers”; and (d) they be-
long to different categories including scene, object, event,
program, people and graphics.

The guideline for the annotation is as follows: if the an-
notator sees a certain concept exist in the image, label it
as positive; if the concept does not exist in the image, or
if the annotator is uncertain on whether the image contains
the concept, then label it as negative. Figure 4 shows the
number of relevant images for the 81 concepts.

As there are 269,648 images in the dataset, it is nearly
impossible to manually annotate all images for the 81 con-
cepts. We thus build a system to find the most possible
relevant images of each concept to support manual annota-
tion. The manual annotation is conducted one-by-one for
all the concepts. Here we briefly introduce the procedures
for annotating one concept. First, all the images that have
already been tagged with the concept word are shown to the
annotators for manual confirmation. After this step, we ob-
tain the ground-truth for a small portion of the dataset for
the target concept. Second, we use this portion of ground-
truth as training data to perform k -NN induction on the re-
maining unlabeled images. The unlabeled images are ranked
according to the scores obtained by k -NN. Third, we present
the ranked list of images to the annotators for manual an-
notation until the annotators cannot find any relevant im-
age in the consecutive 200 images. On average, the anno-
tators manually view and annotate about a quarter of all
images. However, for certain popular concepts such as “sky”
and “animal”, the annotators may annotate almost the en-
tire dataset. We believe that the ground-truth is reasonably
complete as the rest of 3

4
”unseen” images are very unlikely

to contain the concept according to our selection criteria.
We estimate that the overall effort for the semi-manual an-

notation of ground-truth for the 81 concepts is about 3,000
man-hours. To facilitate evaluation, we separate the dataset
into two parts. The first part contains 161,789 images to be
used for training and the second part contains 107,859 im-
ages to be used for testing.

5. NOISE IN THE TAGS
We all expect the original tags associated with the im-

ages in the dataset to be noisy and incomplete. But how is

the quality of the tag set collaboratively generated by the
user community? Is the tag set of sufficient quality to au-
tomatically train the machine learning models for concept
detection? Are there effective methods to “clean” the tag
set by identifying the correct tags and removing those er-
roneous? To answer these questions, in this Section, we
analyze the noise level of the dataset. We calculate the pre-
cision and recall of the tags according to the ground-truth
of the manually annotated set of 81 concepts. The results
are presented in Figure 5. We can see from the Figure that
the average precision and average recall of the original tags
are both about 0.5, that is to say, about half of the tags are
noise and half of the true labels are missing. Here we simply
define a noise level measure using the F1 score:

NL = 1 − F1, (9)

where

F1 =
2 × Precision×Recall

P recision+Recall
. (10)

Figure 6 shows the noise levels of the original tags for the
81 concepts.

To better quantify the effects of the number of positive
samples and noise level for each concept, we conduct the an-
notation using the k -NN algorithm as the benchmark for the
research issue described in Section 6.1. Since the sample size
is too large, it will cost too much time to compute the k -NN.
Here we adopt the approximate nearest neighbor searching
method [1] to accelerate the procedure. The performances
for the 81 concepts evaluated with average precision are il-
lustrated in Figure 7. The sub-figures from top to bottom re-
spectively correspond to the results of k -NN using the visual
features of: color moments, color auto-correlogram, color
histogram, edge direction histogram, wavelet texture, and
the average fusion on the above five features. From the re-
sults, we can see that the annotation performance is affected
by both the number of positive samples in the dataset and
the noise level of the target concept.

The number of positive samples offers positive influence
to the results. Generally if the number of positive samples
for a certain target concept is large, the corresponding av-
erage precision will be high too, such as the concepts “sky”,
“water”, “grass” and “clouds”. While the noise level gives
negative effects on the results. Thus even if the positive
samples for the target concept is large, the performance can
be degraded if the noise level of this concept is large, such
as the concept “person”. Actually there is another factor
affecting the result that is the degree of semantic gap of the
target concept [8]. We can see that for “soccer”, the number
of positive samples is small while the noise level is high, but
the annotation performance is good. This is because the
semantic gap of concept “soccer” is small.

After the average fusion of results obtained from k -NN
using five different visual features, the mean average pre-
cision (MAP) for the 81 concepts reaches 0.1569. Accord-
ing to the simulations in [5], this MAP is effective to help
general image retrieval. Thus we can see that with a suffi-
ciently large dataset, effective models can be learned from
the user-contributed images and associated tags by using
simple methods such as the k -NN.

6. FOUR CHALLENGES
In this Section, we identify several challenging research

issues on web image annotation, and retrieval. To facilitate



Figure 3: The concept taxonomy of NUS-WIDE

Figure 4: The number of relevant images for the 81 concepts



Figure 5: Precision and recall of the tags for the 81 concepts

the evaluation of research efforts on these tasks, we divide
the dataset into two parts. The first part contains 161,789
images to be used for training and the second part contains
107,859 images to be used for testing.

6.1 Non-tagged Image Annotation
This task is similar to the standard concept annotation

problem except that the labels are the tags which are noisy
and incomplete as discussed in Section 5. Effective super-
vised and semi-supervised learning algorithms need to be
designed to boost the annotation performance. The key
problem here is how to handle the noise in the tags. Thus
incorporating user interaction with active learning [13] may
be a good solution.

6.2 Web Image Retrieval
The second problem is on how to retrieve the web images

that have associated tags or surrounding texts. The main
difference between this and the first problem is that the test
images in this problem come with tags, so we can utilize the
visual features and tags simultaneously to retrieve the test
images, while the test images in the first problem only have
visual features.

6.3 Tag Completion and Denoising
The tags associated with the web images are incomplete

and noisy, which will limit the usefulness of these data for
training. If we can complete the tags for every image and
remove the noise, the performance of the learning-based an-
notation will be greatly improved. Thus tag completion and
denoising is very important for learning based web image
indexing.

6.4 Training Set Construction from the Web
Resource

Actually in many cases we do not need to manually correct
all the tags associated to the images in the whole dataset.
Instead, we just need to construct an effective training set
for each concept that we want to learn. It requires two prop-
erties for the training set of every target concept c. (1) The
label of each image for concept c is reliable. This means that
the label for other concepts may be incorrect or incomplete,
whereas that for concept c is the most likely to be correct.

(2) The training samples in this set span the whole feature
space covered by the original dataset [18].

7. LITE VERSIONS OF NUS-WIDE
In some cases, NUS-WIDE is still too large for evaluation

of visual analysis techniques for large-scale image annotation
and retrieval. Thus we design and release three lite versions
of NUS-WIDE. The lite versions respectively cover a general
sub-set of the dataset, as well as focusing on object and
scene oriented concepts. More details on these lite versions
can be found at http://lms.comp.nus.edu.sg/research/NUS-
WIDE.htm.

7.1 NUS-WIDE-LITE
This lite version includes a subset of 55,615 images and

their associated tags randomly selected from the full NUS-
WIDE dataset. It covers the full 81 concepts from NUS-
WIDE. We use half of the images (i.e. 27,807 images) for
training and the rest (i.e. 27,808 images) for testing. Figure
8 illustrates the statistics of training and testing images.

7.2 NUS-WIDE-OBJECT
This dataset is intended for several object-based tasks,

such as object categorization, object based image retrieval,
image annotations, etc. As a subset of NUS-WIDE, it con-
sists of 31 object categories and 30,000 images in total. It
has 17,927 images for training and 12,073 images for testing.
Figure 9 shows the list of object concepts and statistics of
training and testing image datasets respectively.

7.3 NUS-WIDE-SCENE
Similarly, we provide another subset of NUS-WIDE cov-

ering 33 scene concepts with 34,926 images in total. We use
half of the total number (i.e., 17,463 images) for training
and the rest for testing. Figure 10 gives the list of scene
concepts and the statistics of training and testing images.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced a web image dataset asso-

ciated with user tags. We extracted six types of low-level
features for sharing and downloading. We also annotated the
ground-truth of 81 concepts for evaluation. This dataset can



Figure 6: The noise levels of the tags for the 81 concepts

be used for the evaluation of traditional image annotation
and multi-label image classification, especially with the use
of visual and text features. In addition, we identified four
research tasks and provided the benchmark results using the
traditional k -NN algorithm. To the best of our knowledge,
this dataset is the largest web image set with ground-truth.

However, there is still much work to be done. First, our
current manual annotations on the 81 concepts though rea-
sonably thorough, may still be incomplete. This means that
some relevant images for the target concept may be miss-
ing. This, however, provides a good basis for research into
the problems of tag de-noising and completion. Second, the
concept set for evaluation may still be too small. However,
it would be interesting to investigate what is the sufficient
size of dataset to enable effective learning of concept classi-
fiers using simple methods such as the k -NN. Third, for each
image, different concepts may have different degrees of rele-
vance. Thus the tags’ relevance degrees should be provided
for the images. Fourth, the performances of the four defined
tasks are still poor. This is good news as more research
efforts should be paid to develop more effective methods.
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Figure 7: The annotation results of k-NN using the tags with different combination of visual features for
training.



Figure 8: The statistics of training and testing images for NUS-WIDE-LITE

Figure 9: The statistics of training and testing images for NUS-WIDE-OBJECT

Figure 10: The statistics of training and testing images for NUS-WIDE-SCENE


