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Abstract

Much research effort on Automatic Image Annotation
(AIA) has been focused on Generative Model, due to its
well formed theory and competitive performance as com-
pared with many well designed and sophisticated methods.
However, when considering semantic context for annota-
tion, the model suffers from the weak learning ability. This
is mainly due to the lack of parameter setting and appropri-
ate learning strategy for characterizing the semantic con-
text in the traditional generative model. In this paper, we
present a new approach based on Multiple Markov Random
Fields (MRF) for semantic context modeling and learning.
Differing from previous MRF related AIA approach, we ex-
plore the optimal parameter estimation and model inference
systematically to leverage the learning power of traditional
generative model. Specifically, we propose new potential
function for site modeling based on generative model and
build local graphs for each annotation keyword. The para-
meter estimation and model inference is performed in local
optimal sense. We conduct experiments on commonly used
benchmarks. On Corel 5000 images [3], we achieved 0.36
and 0.31 in recall and precision respectively on 263 key-
words. This is a very significant improvement over the best
reported result of the current state-of-the-art approaches.

1. Introduction

Automatic Image Annotation (AIA) becomes increas-
ingly important due to its potential in many interesting ap-
plications, such as keyword based image and video retrieval
and browsing. However, a major bottleneck of AIA is the
so-called semantic gap problem due to the mismatch be-
tween visual perception and high-level semantics. To deal
with this challenge, various AIA models, mostly based on
the discriminative models and the generative probabilistic
models, have been proposed in the current literature. Dis-
criminative model treats AIA as a classification problem, by

treating each semantic concept or keyword as a class. Ear-
lier studies were devoted to develop binary classifiers, while
most recent works viewed the problem as a multi-class clas-
sification. Generative model, on the other hand, focuses
on learning the correlations between visual features and se-
mantic concepts. An influential work is the Cross-Media
Relevance Model (CMRM) [5], which estimates the joint
probability of visual-based keywords and text-based seman-
tic keywords from training samples. CMRM was subse-
quently improved by Continuous Relevance Model (CRM)
[8] and Multiple Bernoulli Relevance Model (MBRM) [4],
which are recognized as the state-of-the-art approaches in
AIA.

In addition to learning from visual features, the context
relationship among semantic concepts is another vivid clue
which could be employed for inferring the semantics of im-
ages. For instance, “bird” and “tree” are co-occurred fre-
quently as the semantic labels of images. Intuitively speak-
ing, this hints higher confidence of labeling a new image as
“bird”, if knowing that there is also a high probability for
“tree” presents in the image. Such context relationship has
indeed been exploited in both discriminative and generative
models. The former extends AIA as a multi-label classifica-
tion problem [13], while the later exploits the correlations
between keywords [11][16].

While generative model such as CRM and MBRM have
shown very competitive performance, the learning ability,
specifically when context relationship being considered, re-
mains limited. The weak learning ability is mainly due to
the lack of proper parameter setting for modeling semantic
context. On one hand, most approaches emphasize model
simplicity by using fewer parameters [8][4], resulting in
over abbreviation of the model for context estimation. On
the other hand, it becomes natural to expect that parame-
ter optimization can pose serious computational problem if
more parameters are included. While there is a trade-off
between model simplicity and annotation effectiveness, ex-
isting approaches, such as CLM [6] and DCMRM [11] de-
veloped based upon CRM for modeling semantic context,



adopt simple parametric model and offer only limited per-
formance improvement as compared to CRM and MBRM.

Different from previous studies [11][6][13][14], we re-
visit the generative model by addressing the learning of se-
mantic context when more parameters mandatory for mod-
eling the relationship are considered. We adopt Multiple
Markov Random Field (MRF) to boost the potential of the
traditional generative model for AIA problem. Specifically,
we model the context relationship among semantic con-
cepts with keyword subgraphs generated from training sam-
ples for each keyword. We present new site potential func-
tion based on generative model for adaptively label predic-
tion. The model parameters are learnt by maximum pseudo-
likelihood with Gaussian prior for regularization. In addi-
tion, our model determines the number of semantic labels of
an image automatically and is robust to the inherent data im-
balance problem – a challenge often comes alongside with
most training sets with semantic labels.

Differing from previous MRF related AIA, such as CML
[13] which focuses on global keyword graph building and
ignores the parameter estimation of MRF, our main contri-
bution is thatwe fully explore the learning ability of Multi-
ple MRFs to realize the full potentials of the widely studied
traditional generative models for AIA. Our approach pro-
vides a better mean of modeling when more parameters are
indeed mandatory for characterizing the underlying seman-
tic context. Therefore, we achieved very significant im-
provement on annotation performance. In our experiment
on Corel dataset [3] we achieved 0.36 and 0.31 respectively
in recall and precision, which is a significant improvement
over the best reported results. We also reported very en-
couraging results on TRECVID dataset.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 presents the model set-
ting for MRF, while sections 4 and 5 outline our approaches
for parameter estimation and model inference respectively.
Section 6 details the AIA procedure using MRF. Section 7
presents the experimental results, and Section 8 concludes
this paper.

2. Related Work

A significant amount of research efforts have been de-
voted to the problem of AIA. Generative model based meth-
ods attempt to estimate the joint probability of image and
keywords. Duygulu et al. [3] used a machine transla-
tion model to link keywords and image regions. Jeon et
al. [5] proposed cross-media relevance model (CMRM)
to estimate the joint probability of keywords and image
using discrete blobs to represent regions. It was subse-
quently improved by continuous relevance model (CRM)
[8] and multiple Bernoulli relevance model (MBRM) [4].
Liu et al. [11] proposed a dual cross-media relevance model
(DCMRM), which integrates keyword relationship, image

retrieval, and web search techniques together to infer the
semantics of image. Wang et al. [14] proposed a Markov
model-based image annotation (MBIA) method, in which
keywords are treated as the states of a Markov chain. Dis-
criminative model based methods apply classification tech-
niques to train classifiers for image labeling. Yang et al.
[15] proposed an asymmetrical support vector machine for
region-based image annotation. Carneiro et al. [2] proposed
a supervised multi-class labeling (SML) approach, which
estimates the class density based on image-level and class-
level Gaussian mixtures. To utilize keyword correlation in
the annotation process, multi-label classification techniques
receive more attentions nowadays. Kang et al. [7] extended
the standard label propagation algorithms to propagate mul-
tiple labels.

Markov random fields are widely used in many com-
puter vision problems, such as image segmentation [12],
object detection [10], etc. In these applications, MRFs are
used for modeling the spatial relationships between pixels.
Recently, Cao et al. [1] applied conditional random fields
(CRF) based on event and scene model for photo annota-
tion. Qi et al. [13] proposed a correlative multi-label (CML)
annotation framework which simultaneously classifies con-
cepts and models their correlations for video annotation. It
is related to MRF, but is limited to global keyword graph
building while lacking focus on MRF model estimation.

3. Multiple Markov Random Fields Based Au-
tomatic Image Annotation

In this section, we first give a brief introduction to MRF
theory, and then detail the construction of our MRFs for
image annotation.

3.1. Markov Random Field

A set of random variablesF = {f1, f2, · · · , fm} is said
to be a Markov random field on sitesS = {1, 2, · · · , m}
with respect to a neighborhood systemN = {Ni|i ∈ S},
whereNi is the set of sites neighboringi, if and only if the
two following conditions are satisfied:

P (f) > 0, ∀f ∈ F, (1)

P (fi|fS−{i}) = P (fi|fNi
), ∀i ∈ S, (2)

wheref = (f1, f2, · · · , fm)T is a random variable vector
andfA = {fi|fi ∈ F and i ∈ A}. Equ. 2 indicates that
a random variable only interacts with its neighboring vari-
ables. The Hammersley-Clifford theorem states that every
MRF obeys the following distribution:

P (f) = Z−1 × e−U(f), (3)

where
Z =

∑

f

e−U(f) (4)



is a normalizing constant called partition function, andU(f)
is the energy function. It is the sum of clique potentials
Vc(f) over all possible cliquesC. In this paper, we only
consider cliques of order up to two. So the energy function
can be reduced to

U(f) =
∑

i∈S

V1(fi) +
∑

i∈S

∑

i′∈Ni

V2(fi, fi′). (5)

Detailed introduction about MRFs and their applications in
computer vision can be found in [9].

3.2. Keyword Graph

In our framework, the construction of the graph struc-
ture of MRF is based on the keyword correlations extracted

from training setT =
{

(dk, fk)
}K

k=1
, wheredk is the fea-

ture vector of thekth image,fk is the corresponding la-
bel vector, andK is the size of the training set.fk =
(fk

1 , fk
2 , · · · , fk

|V|)
T , wherefk

i ∈ {−1, +1} indicates the
absence or presence of keywordwi in a pre-defined vocab-
ulary setV . In the training set, each image is associated
with a set of keywords, which is similar to the so called
“bag-of-words” text representation model in text retrieval.
We consider each training image as a document, and the
associated keywords as the words in the document. Thus
the training set can be viewed as a corpus. We then use
keyword co-occurrence in the corpus to define the corre-
lations between keywords. Specifically, if two keywords
co-occur in the corpus, we consider them to be correlated.
Based on the so-defined correlations between keywords, we
build a keyword graph as follows. Let the keyword set be
S = {1, 2, · · · , m}, wherei ∈ S corresponds to keyword
wi in vocabularyV . We construct a graphG = (S, E) on
keyword setS, where(i, i′) ∈ E if and only if i andi′ are
correlated.

3.3. Generative Model based Potential Function

Instead of building a single MRF on the keyword graph
G as in [13], we construct MRFs one for each keyword
in the vocabularyV to capture different semantics among
keywords. In order to define the sites and neighborhood
system of the MRF for keywordwi, we extract a sub-
graphGi = (Si, Ei) from G, whereSi = {i} ∪ Ni, and
Ei = {(i, j)|i, j ∈ Si and (i, j) ∈ E}. We treat the key-
words inSi as the sites, and two sites are neighbors to each
other if there is an edge between them. Thus the MRF takes
all the keywords correlated withwi into consideration. In
the rest of this section, we discuss the MRF for a single
keywordwi. We still useS to denote the sites of the single
keyword MRF for clarity.

For image annotation task, we employ random variable
fi which takes value from{−1, +1} to indicate the absence
or presence of keywordwi for an image,∀i ∈ S. The value

of fi is said to be the label of sitei. We define thesite
potential as:

V1(fi) = fi(λi + αiP (d, wi)), (6)

whereP (d, wi) is the joint probability of image featured
and keywordwi, which can be obtained from a generative
model based image annotation method. Andλi, αi are the
parameters to be estimated. The motivation of Equ. 6 is, if
αi < 0, the more probable label for highP (d, wi) is +1,
which corresponds to lower site potential. We define the
edge potential as:

V2(fi, fi′) = βii′fifi′P (d, wi′ ), (7)

whereβii′ is the parameter to be estimated. The edge poten-
tial incorporates the joint probability of image featured and
correlated keywordwi′ . By substituting Equ. 6 and Equ. 7
into Equ. 5, we get the energy function:

U(f |θ) =
∑

i∈S

fi (λi + αiP (d, wi)) +

∑

i∈S

∑

i′∈Ni

βii′fifi′P (d, wi′ ), (8)

whereθ denotes the parameters of the MRF. Noting that in
Equ. 8, we assume image featured has been observed.

Most existing approaches based on generative model can
be directly incorporated into the proposed MRF framework.
In our case, we employ MBRM [4] to estimateP (d, w),
which is the expectation computed over the images in the
training set. Since each keyword appears in an image only
once, it is more appropriate to describe annotation keywords
with Bernoulli distribution. Meanwhile, a beta prior (con-
jugate to a Bernoulli) is applied for smoothing. For details
please refer to [4].

Up to now, we have outlined the construction of MRF for
depicting the semantic context of keyword. We will further
present the estimation of parameters for the energy function
in next section.

4. Parameter Estimation

4.1. Pseudo-likelihood

The widely used technique for parameter estimation in
MRFs is maximum likelihood, which chooses the parame-
ters that maximize the joint probability (Equ. 3) of labels
(likelihood of parameters). However, evaluating the parti-
tion function (Equ. 4) is intractable in practice, because the
number of configurations is exponential to the size of the
sites. So we adopt an approximation scheme called pseudo-
likelihood to avoid the evaluation of the partition function
[9]. The pseudo-likelihood is defined as

PL(f) =
∏

i∈S

P (fi|fNi
) =

∏

i∈S

e−Ui(fi,fNi
)

∑

fi
e−Ui(fi,fNi

)
, (9)



where

Ui(fi, fNi
) = V1(fi) +

∑

i′∈Ni

V2(fi, fi′), (10)

is the energy introduced by sitei. Becausefi andfNi
are

not independent, the pseudo-likelihood is not the true like-
lihood. Substituting Equ. 6 and Equ. 7 into Equ. 10, we
can get:

Ui(fi, fNi
) = fi (λi + αiP (d, wi)) +

∑

i′∈Ni

βii′fifi′P (d, wi′ ). (11)

Let

θi = (λi, αi, βii′∀i′∈Ni
)T , (12)

xi = (1, P (d, wi), fi′P (d, wi′)∀i′∈Ni
)T , (13)

then we can rewrite Equ. 11 to

Ui(fi, fNi
) = fiθ

T
i xi, (14)

whereθi is the parameter associated with sitei, andxi is
the training data constructed for sitei. Substituting Equ. 14
into Equ. 9, the pseudo-likelihood is given by

PL(f) =
∏

i∈S

e−fiθ
T

i
xi

e−θT

i
xi + eθT

i
xi

. (15)

The parametersθ = (θT
1 , θT

2 , · · · , θT
|S|)

T are estimated by
maximizing the pseudo-likelihood with regularization on
the training images.

4.2. Maximum Pseudo-likelihood with Regulariza-
tion

Suppose we have constructed a training data set
T = {(xk, fk)}Kk=1 for the working MRF, wherexk =
{xk

1 ,x
k
2 , · · · ,xk

|S|}, x
k
i is defined as in Equ. 13 for thekth

image, andfk = (fk
1 , fk

2 , · · · , fk
|S|)

T , fk
i is the label of

site i for thekth image. Then the pseudo-likelihood on the
training setT is

K
∏

k=1

PL(fk) =

K
∏

k=1

∏

i∈S

P (fk
i |f

k
Ni

)

=
∏

i∈S

K
∏

k=1

P (fk
i |f

k
Ni

) =
∏

i∈S

PLi, (16)

where

PLi =
K
∏

k=1

P (fk
i |f

k
Ni

) (17)

is the pseudo-likelihood on sitei. Because there is no
shared parameter between anyPLi, the maximum pseudo-
likelihood estimationθ = (θT

1 , θT
2 , · · · , θT

|S|)
T of Equ. 16

can be obtained by maximizePLi to get the parametersθi

(Equ. 12) for each sites. Note, this property not only speeds
up the parameter estimation process significantly, but also
enables us to estimate the parameters on different sites with
their own training data sets. With the specific training set
for each site of the MRF, the problem of data imbalance
can be mitigated in some extent. Now we concentrate on
maximizingPLi to get the pseudo-likelihood estimation of
θi.

Suppose we have constructed a training setTi =
{(xk

i , fk
i )}Ki

k=1 for site i, then the log pseudo-likelihood on
sitei is

lnPLi =

Ki
∑

k=1

lnP (fk
i |f

k
Ni

)

=

Ki
∑

k=1

{

(1− fk
i )θT

i x
k
i − ln(1 + e2θT

i
x

k

i )
}

. (18)

The excessive number of parameters can cause over-fitting
problem when there is insufficient training examples avail-
able. To deal with this problem, we penalize the log pseudo-
likelihood Equ. 18 with a spherical Gaussian weight prior:

Li(θi) =

Ki
∑

k=1

{

(1− fk
i )θT

i x
k
i − ln(1 + e2θT

i
x

k

i )
}

−
‖θi‖

2

2σ2
,

(19)
where the value ofσ is chosen empirically and constrained
to be the same for all sites. To maximize Equ. 19, we set its
derivatives to zero. These score equations are

∂Li(θi)

∂θi

=

Ki
∑

k=1

{

x
k
i

(

1− fk
i − 2P (xk

i ; θi)
)

}

−
θi

σ2
, (20)

where

P (xk
i ; θi) =

e2θT

i
x

k

i

1 + e2θT

i
xk

i

. (21)

To solve the score equations Equ. 20, we employ the
Newton-Raphson algorithm, which requires the Hessian
matrix

∂2Li(θi)

∂θi∂θT
i

= −4

Ki
∑

k=1

{

x
k
i x

kT

i P (xk
i ; θi)

(

1− P (xk
i ; θi)

)

}

−
I

σ2
,

(22)
whereI is the identity matrix. Starting withθold

i , a single
Newton-Raphson update is

θnew
i = θold

i −

(

∂2Li

∂θi∂θT
i

)−1
∂Li

∂θi

, (23)

where the derivatives are evaluated atθold
i . The Newton-

Raphson algorithm will converge, because the penalized log
pseudo-likelihood Equ. 19 is concave.



5. Model Inference

The inference problem in MRFs is to find the most prob-
able configuration of the sites:

f
∗ ← argmax

f

P (f), (24)

where P (f) is given by Equ. 3. We employ an algo-
rithm called iterative conditional modes (ICM) for infer-
ence, which maximizes local conditional probabilities se-
quentially. In the(k + 1)th iteration step, given the image
featured and the other labelsf (k)

S−{i}, the algorithm sequen-

tially updates eachf (k)
i into f

(k+1)
i by maximizing the con-

ditional probabilityP (fi|d, f
(k)
S−{i}). Because in a MRF,

fi only depends on the labels in its neighborhood, we can
equivalently maximize

P (fi|d, f
(k)
Ni

). (25)

Maximizing Equ. 25 is equivalent to minimizing the corre-
sponding potential using the following rule

f
(k+1)
i ← arg min

fi

Ui(fi, fNi
), (26)

which is equivalent to

f
(k+1)
i =

{

1, if θT
i xi ≤ 0

−1, if θT
i xi > 0

, (27)

whereθi is the estimated parameter of sitei, andxi is the
training data constructed for sitei based on the image fea-
ture. Starting from an initial configuration, the iteration
continues until convergence, and then we can get the most
probable labels of the sites.

6. Image Annotation

In this section, we outline the algorithms for MRF learn-
ing and image annotation.

6.1. Training Set Construction

In order to perform parameter estimation, we construct
training data for each site of the MRF from training data set
T . Suppose we want to build a training setTi for site i,
which is corresponding to keywordwi. We first sample the
training setT to get a new setT

′

i of sizeKi with a more bal-
anced positive and negative samples for keywordwi, where
the positive samples are images labeled with keywordwi.
Sampling is helpful to deal with the data imbalance problem
in the training set, because in practical systems, there arefar
more negative samples than the positive ones. We utilize
all the positive samples of a keyword and randomly select
a subset of negative samples whose size is larger than the
positive sample set by a small factorδ, whereδ = 1 in our

experiment. The reason is that if we have sufficient positive
samples, the additional negative sample would have little ef-
fect on the built model. On the other hand if the semantic is
hard to capture because of the lack of enough positive sam-
ples, then the extra negative sample can prevent the model
from generating excessive false positives. Second, for each
imagedk in the training setT

′

i , we extract the labels corre-
sponding to sitei and all its neighboring sitesi′ ∈ Ni, and
calculate the joint probabilitiesP (dk, wi) andP (dk, wi′)
on these sites. Finally, we combine the labels and the joint
probabilities to form a training setTi = {(xk

i , fk
i )}Ki

k=1,
wherexk

i is defined as in Equ. 13 for thekth image, andfk
i

is the label of sitei for thekth image. Algorithm 1 is the
procedure for training set construction.

Algorithm 1 Training Set Construction
1: Input: global training setT , working MRFMRF

2: Output: training setT
′′

for MRF

3: for each sitei of MRF do
4: SampleT to get a much balanced data setT

′

i

5: for eachdk ∈ T
′

i do
6: Extract labelsfk

i andfk
i′ , ∀i

′ ∈ Ni

7: CalculateP (dk, wi) andP (dk, wi′), ∀i′ ∈ Ni

8: Calculatexk
i = (1, P (dk, wi), f

k
i′P (dk, wi′)∀i′∈Ni

)T

9: end for
10: Ti = {(xk

i , fk
i )}Ki

k=1

11: end for
12: T

′′

=
⋃|S|

i=1 Ti

6.2. Annotation Algorithm

After parameter estimation on the constructed training
set, the annotation process is straightforward. Note, for an
input imageI, each MRF will output a label vector, but only
the corresponding label, say thewi for theith MRF, will be
considered as the most confidential one and treated as the
label forI. After performing inference on all the MRFs, we
obtain the annotation of the image. Our Markov Random
Fields based Image Annotation method- MRFA is summa-
rized in Algorithm 2. Note if we annotate a collection of

Algorithm 2 MRFA: Markov Random Field Image Anno-
tation Process

1: Input: an unlabeled imageI, keyword vocabularyV ,
training setT , constructed keyword graphG

2: Output: labels of imageI
3: for eachw ∈ V do
4: Extract a subgraphGw fromG for MRFw

5: Construct training setT
′′

w for MRFw by Alg. 1
6: Estimate the parameters ofMRFw based onT

′′

w

7: Perform inference ofI onMRFw to get the label
8: end for



images, the keyword subgraphs, training sets construction
and parameter estimation for each MRF only need perform
once.

7. Experiment

7.1. Experimental Dataset and Evaluation

Corel Dataset: We use Corel image dataset [3] for ex-
periments. The dataset is widely used in AIA for perfor-
mance comparison. It consists of 5000 images , where 4500
images are for training and the rest for testing. Each im-
age is labeled with 1-5 keywords, and a total of 374 differ-
ent keywords are in the dataset. Each image is segmented
into 1-10 regions. For each region, a 36-dimensional feature
vector is extracted [3]. In addition to region-based features,
grid-based features are also used by CRM and MBRM.
Here we also introduce a new grid feature. We partitioned
each image into 26 rectangular grids (5 × 5 plus one extra
center grid), and extracted 528 dimensions feature vector
for each grid, namely 448 color features (including local
and global color histogram) and 80 edge features extracted
according to MPGE7. In the experiment, we perform test-
ing using both region-based and grid-based features. We ap-
pend the name of an approach with ’-grid’, if our grid-based
feature is used. For example, MBRM-grid means MBRM
using our grid-based features.

TRECVID Dataset: To evaluate our approach for video
annotation, we also conduct experiments on the benchmark
TRECVID 2005 dataset, which contains about 170 hours of
multi-lingual broadcast news. These videos are automat-
ically segmented into 61,901 shots. Each shot is further
segmented into 5 grid, and a 45-dimensional visual feature
vector is extracted for each grid. Thus each shot has a 225-
dimensional feature vector. There are 39 different keywords
in the dataset, and each shot is associated with 0-11 key-
words. We construct the training set with 9,000 randomly
sampled shots and the test set with another 1,000 randomly
sampled shots. Every sampled shot is labeled with at least
one keyword.

Evaluation Measures: Similar to previous work for im-
age annotation, we use recall and precision to measure the
annotation performance. Given a query wordw, let |WG|
be the number of human annotated images with labelw in
the test set,|WM | be the number of annotated images with
the same label of the annotation algorithm, and|WC | be
the number of correct annotations of our algorithm, then
recall and precision are defined asrecall = |WC |

|WG| and

precision = |WC |
|WM | .

Table 1. Performance comparison with MBRM on Corel dataset
using region-based features

Models MBRM MRFA

#words with recall> 0 109 124
Average #words/image 5 4.3

Results on all 263 words
Mean Per-word Recall 0.20 0.23
Mean Per-word Precision 0.19 0.27

Results on 49 best words
Mean Per-word Recall 0.68 0.67
Mean Per-word Precision 0.64 0.76

Table 2. Performance comparison with MBRM and single MRF
on Corel dataset using grid-based features

Models MBRM MRFA MRF-s

#words with recall> 0 123 172 136
Average #words/image 5 5.2 9.6

Results on all 263 words
Mean Per-word Recall 0.25 0.36 0.28
Mean Per-word Precision 0.23 0.31 0.20

Results on 49 best words
Mean Per-word Recall 0.75 0.79 0.69
Mean Per-word Precision 0.73 0.80 0.63

7.2. Experiments Results

7.2.1 Comparison on Corel Dataset

Since MBRM is the representative generative model based
AIA approach with very competitive performance, we first
compare our annotation framework with MBRM on the
Corel dataset using region-based features [3]. Because most
previous work cannot automatically determine the optimal
annotation length, for MBRM, we fix the size of each im-
age annotations to 5 as in [4], it shows best performance in
experiment. While our approach can automatically decide
the size of the annotation. The results are shown in Table 1.
From the table, we can see that as compared with MBRM,
our proposed MRFA method improves the annotation per-
formance significantly. For all 263 words appearing in the
test set, it gains 15% on average recall and 42% on aver-
age precision respectively. For the best 49 keywords with
largest F1 scores, it gains 19% on average precision while
the average recall is nearly the same. Overall, our method
labels 4.3 keywords for each image on average, which is
less than MBRM of 5. Also, our method has 124 keywords
with recall > 0 as compared with 109 of MBRM, which
means that our method has better performance on labeling
rare keywords which are hard to annotate due to the small
number of positive instances in the training set.

By using the grid-based visual features, both the perfor-
mance of MBRM and our MRFA improved significantly as
compared to using region features. The results are shown



Figure 1. The annotation performance compared with other meth-
ods by Recall

Figure 2. The annotation performance compared with other meth-
ods by Precision

in Table 2. For all 263 keywords, our method has 172 key-
words with recall> 0, which is a significant 40% improve-
ment over MBRM. The average recall and average precision
of MRFA is 0.36 and 0.31 which again indicates significant
improvement of 44% and 35% respectively over MBRM.
For the best F1 49 words, our model also has significant im-
provement on average recall and average precision. Over-
all, the experimental results demonstrate our approach has
strong ability to improve annotation accuracy and label rare
keywords. Our analysis shows that the performance im-
provement of our method is mainly contributed by our pro-
posed new MRF model instead of our grid-based visual
features. To compare our multiple MRF with the method
of using global graph MRF, we also show the annotation
performance of using a single MRF (denoted by MRF-s in
the experiment) for all the 374 keywords in Table 2, which
indicates that by training multiple MRFs, MRFA avoids a
global optimal parameter setting which is hard to estimate,
so achieves better annotation performance.

Besides of MBRM [4], we also compare our approach to
five other different state-of-the-art AIA methods, including
generative model: CRM [8], CLM [6], DCMRM [11], and
discriminative model: MBIA [14], and SML [2]. Figure 1
and 2 show the comparative performance in terms of recall
and precision between our MRFA method and the state-of-
the-art approaches. Our method achieves the best precision
and recall, and the improvement is more than 24% as com-
pared with the second best performing system.

Figure 3 gives some examples of annotation results of

Table 3. Performance comparison with MBRM on TRECVID
dataset

Models MBRM MRFA

#words with recall> 0 32 39
Average #words/image 5 3.62

Results on all 39 words
Mean Per-word Recall 0.39 0.47
Mean Per-word Precision 0.32 0.45

our method and MBRM on Corel dataset. It shows that our
method not only covers the correct annotation keywords la-
beled by MBRM, but also labels more true keywords and
avoids some false alarms. For example, the annotation re-
sult of MRFA for the first image and the last image are the
same as the ground-truth, while MBRM has false alarms.
For the third image, our MRFA even labeled a keyword
“caribou ”, which should be the true keyword for this im-
age, but was ignored by the human annotators.

7.2.2 Comparison on TRECVID Dataset

For video data, we compare our method with MBRM on
TRECVID 2005 dataset. We fix the number of annotation
keywords per video shot for MBRM to be 5, which achieves
the best performance in our experiments. The experimen-
tal results are given in Table 3. From the Table, we can
see that as compared to MBRM, our method can predict all
the 39 words in the annotation vocabulary, and it achieves
improvement of 21% and 41% respectively on average re-
call and average precision, while labeling each shot with
fewer keywords. Figure 4 gives details of annotation per-
formance of each keyword as compared to MBRM. It shows
that for most keywords our method has significant improve-
ment on precision as compared with MBRM. For recall, we
have 14 keywords better than MBRM, 17 keywords equal
to MBRM. MRFA performs satisfactorily for rare keywords
such as ”Mountain”, ”Prisoner” and ”Truck” that cannot be
predicted by MBRM.

8. Conclusion

We have presented the formulation of Markov Random
Fields to empower the learning ability of generative model
for AIA problem. Such formulation is demonstrated to be
appropriate for learning the context relationship of semantic
concepts. The newly proposed potential function for opti-
mal parameter estimation and model inference, in particu-
lar, shows significant impact on the learning ability. Our
approach also offers great ability in labeling rare keywords
and adaptive determination of the number of keywords for
image annotation. We verified the performance of our ap-
proach through extensive experiments on commonly used
benchmarks. Particularly, we reported the state-of-the-art



Figure 3. Some annotation examples on Corel dataset

Figure 4. Comparison of MRFA and MBRM on TRECVID dataset for 39 keywords. Please see color version for more clarity

performance on Corel dataset, showing significant improve-
ment over six other existing approaches based on generative
and discriminative models.

For future work, we will focus on two directions. One
direction investigates the scalability issue when there are
thousands keywords to be annotated. One possibility is to
explore the use of one keyword subgraph for a class of key-
words rather than one graph per keyword as it is currently
done with great effectiveness. Another direction is to im-
prove annotation performance by leveraging on WordNet
or Web resource in building keyword graph.
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