
Hierarchical Indexing and Flexible Element Retrieval
for Structured Document

Hang Cui1*, Ji-Rong Wen2, Tat-Seng Chua1

1 Department of Computer Science,
School of Computing,

National University of Singapore, Singapore
cuihang@comp.nus.edu.sg
chuats@comp.nus.edu.sg

2 Microsoft Research Asia

No.49 Zhichun Road Haidian District
Beijing, P.R.China
jrwen@microsoft.com

Abstract. As more and more structured documents, such as the SGML or XML
documents, become available on the Web, there is a growing demand to de-
velop effective structured document retrieval which exploits both content and
hierarchical structure of documents and return document elements with appro-
priate granularity. Previous work on partial retrieval of structured document has
limited applications due to the requirement of structured queries and restriction
that the document structure cannot be traversed according to queries. In this pa-
per, we put forward a method for flexible element retrieval which can retrieve
relevant document elements with arbitrary granularity against natural language
queries. The proposed techniques constitute a novel hierarchical index propaga-
tion and pruning mechanism and an algorithm of ranking document elements
based on the hierarchical index. The experimental results show that our method
significantly outperforms other existing methods. Our method also shows ro-
bustness to the long-standing problems of text length normalization and thresh-
old setting in structured document retrieval.

1 Introduction

Traditional information retrieval treats document as the smallest retrieval unit, but in
many scenarios a user may actually require part of the document with higher preci-
sion and finer granularity. Suppose a user who studies history of military operations
would like to find out “what military aircrafts were used in Desert Storm”. He or she
may retrieve articles named Military Aircrafts and Gulf War as two of the top-ranked
results, both of which contain only a part of relevant content. The user then has to
scan each (usually very long) document to look for relevant information. This is a
time-consuming process which hinders the effectiveness of information retrieval.
Such an information overload is very common in typical Web searching applications.

* This work was performed when the author was a visiting student at Microsoft Research Asia.

Today, with the widely use of XML, there is an increasing demand to develop bet-
ter techniques for structured document retrieval. XML provides a standard and effec-
tive way for the author to explicitly express the structure of a document. For example,
our corpus from the Encarta website (http://encarta.msn.com) can be considered as a
set of content-oriented XML documents. A typical structured document is represented
as a collection of nodes such as sections, subsections, and paragraphs, as shown in
Figure 1. We call each node as an element in the rest of this paper. The node repre-
senting the whole document, known as the root, is also considered as an element such
that all nodes in the entire document tree are treated equally. The leaf nodes are made
up of paragraphs. All upper-level nodes are ancestors of paragraphs, with their con-
tents formed by those of paragraphs.

Docum ent

Section Section SectionParagraph

Section Section SectionParagraph

Paragraph ParagraphParagraph Paragraph Paragraph Paragraph

Figure 1. Document Structure in Encarta

A document, especially a long one, usually covers multiple aspects of a central

topic. The elements in a document can be viewed as a concept tree, i.e., the upper
element represents a broader concept which covers all the concepts beneath it. Docu-
ment retrieval can only be partially called information retrieval unless the elements
expressing the appropriate level of concept can be precisely retrieved. An effective
retrieval system should provide this capability without imposing too much burden on
users.

In this paper, we propose a method of retrieving relevant document elements, ex-
ploiting both structural information and the statistics of term distributions in struc-
tured documents. The main thrust of this solution is to allow the retrieval of relevant
document elements with arbitrary granularity using keyword-based queries. We call it
a flexible element retrieval strategy. Our solution is mainly made up of two parts – a
novel hierarchical index propagation and pruning mechanism and an algorithm for
selecting suitable document elements based on the hierarchical index.

Comparing to existing works, we put much emphasis on the indexing phase. Ap-
plying specific indices to retrieving data with structural information has long been
studied in the areas of database and IR, such as indexing semi-structured data for

XML documents retrieval [12] and bottom-up indexing schemes for structured docu-
ments retrieval [11]. Previous approaches assign index terms to only the leaf nodes
[10] [12] [14] [15] or fixed-length passages [3] [8] [9]. The main drawback of such a
kind of indexing mechanism is that the flat index does not match the hierarchical
structure of documents. It discards semantic relationships among the elements. The
inconsistency between the structures of documents and indices prevents users from
obtaining composite elements, thus results in many discrete passages, which leads to
the tough work of assembling the resulting excerpts of text to users [15].

The essential problem for indexing structured document is that, in order to get
elements at arbitrary levels, the weights for various elements against a given query
must be comparable. [4] has a similar purpose in indexing and retrieving hypertext
medical handbook in which related materials are represented as linked cards. In their
method, the weight of a card E is determined by the TF-IDF values of all the query
terms in E plus the average TF-IDF weights of all immediate-descendant elements of
E. Card weights are propagated recursively from the leaf elements to the root element.
This is one of the first works to index document elements by combining the content
and structure information. But this method may not be practical to index a large
amount of structured documents mainly due to two reasons. First, in the hypertext
medical handbook model, every element has its own content and the contents of its
descendant elements are only viewed as supplements to its own content. However, in
the case of general structured documents, such as the XML documents, an intermedi-
ate element usually does not have its own content and it is totally made of the con-
tents of its descendant elements. If the weight propagation technique in [4] is directly
employed, the weight of a composite element without its own content will always be
ranked lower than that of its descendents, because its weight is the average value of
the summed weights of all its descendents. Consequently, the leaf elements will al-
ways be retrieved as best matches. Second, the propagation mechanism in [4] does
not perform any pre-processing and thus the same index terms may be distributed in
multiple elements of one document, which is very costly in terms of both storage
space and computation time, especially when handling a large amount of documents.
Moreover, the author did not give any quantitative evaluation of the proposed method.
Thus it is hard to judge its effect in a real application scenario.

We approach the goal of flexible element retrieval by a hierarchical indexing
mechanism, which is not only able to index the leaf nodes but also intermediate nodes,
i.e. section and document nodes. Basically, we use a propagation and pruning mecha-
nism to select index terms. From bottom up, terms that can “exactly” describe the
inherent concept of an element are propagated to it while terms with too broad or too
narrow meanings are pruned. Index pruning is employed to ensure that an index term
appearing in an element would not appear in any of its descendent elements thus the
content overlap in the text is avoided in the index. This saves much storage space and
retrieval time. Moreover, this hierarchical indexing mechanism produces an index
structure that is identical to the document structure. Hence we can perform document
element retrieval on the index space directly. Figure 2 illustrates the process of index
propagation and pruning. Assuming that we have a document named “China” with a
section “History” and this section contains subsections such as “Tang dynasty”,
“Ming dynasty” and “Qing dynasty”, etc. Then for the section “History”, only terms

like “history” and “dynasty” are good index terms, while for the whole document,
only the term “China” is the best choice.

Based on the hierarchical index, we also propose a flexible element retrieval algo-
rithm to rank candidate elements against queries so that suitable document elements
that precisely meet user’s information needs can be returned.

We conducted a series of experiments to evaluate the performance of our method
in terms of precision and recall at element level. The results show that our method
significantly outperforms the compared method and is less sensitive to threshold
setting than the traditional passage retrieval methods.

Qing
Dynasty
Manchu
Kang Xi
History
China

Tang
Dynasty

Sui
Sui Yang
History
China

Section Section

Document

Qing
Manchu
Kang Xi

Tang
Sui
Yang

History
Dynasty

Economy

China

The Document
Structure

The Index
Structure

Figure 2. Index propagation and pruning mechanism

2 Related Work

In recent years, many structured document retrieval techniques have been developed.
In traditional IR community, due to the absence of explicit structural information,
documents are treated as a sequence of fixed-length [3] or pre-defined [15] portions
of text, which are considered as passages or paragraphs. Passage retrieval [3] [8] [9]
[15] [16] is one of the early techniques aiming to retrieve and return more compact
and shorter answers at passage level to the user. A passage retrieval method usually
indexes the documents at passage or paragraph level, and applies the variants of
TFIDF measure to rank passages, while [13] is an exception, which suggests using
Hidden Markov Model to retrieve both documents and passages. More recently, re-
searchers start to address the problem of mixing content and structure in retrieval
models [2]. [12] suggests a model containing a number of useful operators that can
achieve relatively high efficiency.

Another group of methods, mainly developed by the database community, concen-
trate on retrieving specific fields of semi-structured or XML data by indexing struc-
tures and strictly defined query languages [1] [7]. In the case of XML query lan-
guages, these methods require the user to specify structured queries. However, with-
out the knowledge of the document structure, it would be very hard for the users to

formulate meaningful queries. Moreover, only the data elements whose structures
exactly match the specified query structure can be retrieved.

We found there was a lack of an appropriate method that balances the trade-off be-
tween the full utilization of document structure and the convenience of common users.
Some researchers attempt to address this problem. [14] explores the use of inference
network to represent elements of a document at different levels so that all elements
can be treated equally. However it still has difficulty in properly ranking various
elements with the existence of content overlaps. [6] proposes a new way to index a
bibliography repository with a hierarchical structure. Focused retrieval method of
locating document components that contain relevant information is introduced in [10].
[5] describes a new query language introducing some information retrieval features,
such as weighting to XML documents retrieval.

3. Hierarchical Indexing of Structured Documents

In this section, we describe the details of our hierarchical indexing strategy. For each
document, we automatically establish a hierarchical index with the same structure as
that of the document. Index terms are distributed across all nodes in the document
tree. The basic idea of assigning an index term to an element node is that the term
should characterize the concept of this element and differentiate it from the others.
Thus, a rule of thumb for selecting good index terms is that the term should appear
frequently and be distributed evenly in the text of an element and, its rank is high
compared to its peer terms.

3.1 Term Weighting for Elements

By taking advantage of the hierarchical structure of the documents, the distribution of
a term in an element can be measured by investigating the term’s appearances in the
descendant elements of this element. It is noted here that we consider only immedi-
ate-descendant elements of the element because we believe that the topic of an ele-
ment is best supported by the elements that it owns directly. If a term is distributed
evenly in a composite element’s immediate-descendant elements, this term would be
a good candidate index term for this element.

We introduce the concept of entropy here as a criterion to measure the distribution
of a term in an element. Here we distinguish between two types of elements – the
intermediate elements and leaf elements which are paragraphs. For an intermediate
element, we compute the weight of a term by combining the term’s intra frequency in
this element and the term’s distribution in its immediate-descendent elements. That is
the weight of term it in an arbitrary composite element jE can be defined as:

),()),(1ln(),(jijiji EtIEttfEtWeight ×+= (1)

where tf(ti, Ej) denotes the frequency of term ti in the element Ej. I(ti, Ej) is the entropy
measure, i.e. the distribution of the term ti in element Ej and is defined as:

)(
1ln),(

),(
),(

ln),(

)(
1ln

)(
),(

),(
),(

ln),(
),(

subN
Ettf

Ettf
subttfsubttf

subNsubN
Ettf

Ettf
subttfsubttf

EtI

ji

ESub ji

ki
ki

ESub

ji

ESub ji

ki
ki

ji

jk

jk

jk

×−

×−

=

×−

×−

=

∑

∑

∑

∈

∈

∈

 (2)
where subk stands for the thk immediate-descendant element of Ej and N(sub) the
number of such descendant elements.

In Equation 2, it is worthwhile to notice that term frequency varies greatly in dif-
ferent elements due to the great variance of text lengths. Entropy measure may en-
counter the same length normalization problem as in other document or passage re-
trieval methods. [3] [8] [9] [6] [14] [15] addressed the normalization of text length
but were limited to the factor of term frequency. We compute the theoretic maximum
entropy

)(
1ln),(
subN

Ettf ji ×− and use this as normalization factor. It hypothesizes that

all appearances of this term in a specific element are exactly equal in each of its im-
mediate-descendant elements. The proportion of this value is used as the distribution
measure of a term. It counters the negative effect of varying text lengths to some
extent.

Leaf elements of paragraphs are “atomic” elements, which have no children ele-
ments, thus we simply employ the traditional TFIDF measure to compute the weight
of terms in a single paragraph. A term’s weight in a paragraph is defined as:

i
jiji n

NPttfPtWeight ln)),(ln(),(×= (3)

Weight(ti, Pj) represents the weight of term ti in paragraph Pj. tf(ti, Pj) is the term fre-
quency of ti in the paragraph. N denotes the total number of documents in the corpus
and in the number of documents containing ti.

Term weights are further normalized to be comparable in different elements. Term
weights obtained by Equations 1 and 3 are divided by the maximum weight of all
terms in the same element so that all terms’ weights fall into the range of between 0
and 1.

3.2 Propagation and Pruning of Index Terms

Recall that a term in an element whose weight is relatively high should be selected as
the index term for this element. Specifically, the selection of index terms is realized
by the propagation and pruning process. In the previous section, we derive the
weights for each term in an arbitrary element. A term is propagated to an upper ele-
ment if its weight exceeds a certain threshold, and meanwhile this term is pruned
from these descendant elements since it may stand for a more general concept. This
process is done recursively from bottom up until all the nodes in the tree are assigned

proper index terms without duplications in the same branch of the index tree. Obvi-
ously, the threshold controlling the term selection should be dynamically adjusted
according to the statistics of all the terms’ weights in a specific element. More pre-
cisely, a term is chosen as an index term for an element if and only if its weight is
above the average value plus the standard deviation of all terms’ weights in this ele-
ment. Our indexing propagation and pruning mechanism can be described as follows:

Algorithm 1 – terms selection (index terms propagation and pruning)

1. For each leaf element, i.e. paragraph, calculate all terms’ weights for para-
graphs according to Equation (3).

2. For each composite element Ej at the next upper level, calculate the terms’
weights using formula (1) by measuring these terms’ occurrences in this
element and the distributions in the immediate-descendant elements of Ej.

3. For term ti, if)(_)(),(jjji EdevstdEaverageEtWeight +≥ , then term it is
selected as an index term of the element Ej and all the descendent elements
of Ej would eliminate ti from their index term lists. This process is called the
index term propagation and pruning. Here average(Ej) denotes the arithmetic
average of all terms’ weights in element Ej and std_dev(Ej) the standard de-
viation of these weights.

4. Recursively perform step 2 onwards until the root node (i.e., the document)
is reached.

This indexing solution makes full use of the internal structural information of

documents. Since all terms are compared to each other at the same level and a theo-
retic maximum entropy value is used as the normalization factor, the negative effect
of varying lengths of text in elements at different levels is minimized. Our experimen-
tal results are able to testify this. In addition, an index term of an element need not
necessarily appear in all sub-elements of this element due to the nature of the meas-
urement of the term weight. Thus more representative index terms other than just a
few words in titles can be found.

4. Flexible Element Retrieval and Result Browsing

In this section, we describe the flexible element retrieval algorithm which is used to
select suitable document elements. With the help of hierarchical index, the main task
of the retrieval phase is online searching and ranking of candidate elements.

4.1 Path Ranking and Retrieval Process

For each document, we use a path ranking algorithm to calculate relevance values of
all candidate elements against a query. A path for an element is defined as the branch
containing all the ancestor elements of this element (including itself) in the document
tree. According to our hierarchical indexing mechanism, an element does not share

any index terms with its ancestors. Thus we say that an element is completely repre-
sented by all index terms of the elements along its path. Conversely, a path can be
expressed as the element at the lowest level in the path. Therefore, the element rank-
ing problem can be transformed to a path ranking problem, that is, to find those ele-
ment paths with high relevance values to the query.

The relevance value for a path against a given query is defined as:

∑
=

×=
Q

i i
pip n

NPathtWeightPathlevance
1

ln),()(Re (4)

in
Nln is the IDF value of query term ti and is used here as the query term’s weight. Q

stands for the number of query terms in a query. Weight(ti, Pathp) is defined as the
weight of the query term ti for path Pathp. We define that a term’s weight for a path is
its weight for the element that containing this term along the path, as is defined by
Equations (1) and (3).

Given a new query, we use traditional document retrieval methods to get a list of
relevant documents first in order to narrow down the search space. Then when the
user selects one of the relevant documents, the system searches for all candidate ele-
ments of this document and ranks their paths according to Equation (4). The most
relevant elements are sorted and displayed with the structural context to the user. The
overall process is described as below:

Algorithm 2 – Path ranking

1. Find all elements that contain at least one query term.
2. Get paths for all candidate elements and merge the paths, that is, merge two

paths into one if one is a part of the other.
3. Assign the weights of the query terms for elements to their paths respectively.
4. Rank these paths according to Equation (4).
5. Return the elements corresponding to the ranked paths with the ranks satisfy-

ing the pre-defined threshold in a descending order.

A long-standing problem in structured document retrieval is how to select proper
elements which best satisfy the user’s query needs. Usual method to solve this prob-
lem is to set a fixed threshold and the elements with ranks above this threshold are
returned as the results [15]. However due to the variation in text length, the proper
threshold varies with documents and queries. We use the average of all retrieved
elements’ ranks as the dynamic threshold. The experiments show that a more accurate
element retrieval can be attained based on this dynamic threshold.

4.2 Result Browsing

Flexible information retrieval may return larger or smaller granularity results than
what the user needs. Therefore a good user interface for browsing the results in the
original tree structure context is crucial for improving users’ query process. Figure 3
shows a snapshot of the interface of our flexible element retrieval system with a given
query “Qing dynasty”.

In Figure 3, we can see that total of sixteen elements are returned for the document
named “China”, among which there are sections and paragraphs. The top element is a
section with the title “The Manchu Qing Dynasty” that is dedicated for describing the
Qing Dynasty in the history of China. This section is under the 7th section of this
document, whose title is “History”. From the left browsing pane, we can see clearly
each section or paragraph’s position in the document. In comparison, when we click
the first article “Qing Dynasty”, we get the whole document since the entire docu-
ment is rooted on this topic. In summary, the flexible retrieval system returns the
most appropriate document elements to users according to their queries.

5. Evaluation

In this section, we evaluate the performance of our proposed flexible element re-
trieval method and investigate the effects of threshold settings on element retrieval.
The experiments are conducted on the Encarta corpus, which contains 41,942 well
structured XML documents. The query set is made up of 10 queries, which can be
best answered by only a part of the relevant documents. The 10 queries used in this
experiment are listed in Figure 4.

For comparison purpose, we implemented a passage retrieval system, TFIDF Para.
This system uses only pre-defined paragraphs in Encarta documents as passages
while ignoring other structural information. A term’s weight in a paragraph is defined
by the conventional TFIDF measure [15], which is the same as Equation (3). The
relevance measure between a given query and a specific paragraph is the cosine simi-
larity between their term vectors.

Figure 4. Queries for element retrieval evaluation

1. History of China
2. Qing Dynasty
3. Atomic bomb in American history
4. Ford Motors in World War II
5. What is the impact of Newton on calculus?
6. What is the attitude of Microsoft to World Wide Web?
7. What is the influence of Lincoln in American history?
8. Fleet Street in London
9. Military aircrafts used in Desert Storm
10 .What missiles can nuclear submarines carry?

Figure 3. The interface of the Flexible Element Retrieval System

5.1 Performance Evaluation of Element Retrieval

Previous work on passage retrieval or structured document retrieval focuses their
evaluations mainly on the impact of passage level evidence on retrieving the whole
documents [3] [9] [15]. Some of them gave out several examples of extracted compo-
nents in a selected document given a specific query [15]. But none of them conducted
special experiments dedicated to the evaluation of the effectiveness of element re-
trieval. [14] intends to implement such experiments but they lack appropriate test
collection. We conducted a series of experiments in order to testify if our flexible
element retrieval method can find elements with proper granularity against the users’
queries.

Relevance judgments are made by human assessors. For each query, the assessors
first select a document that is considered as most relevant. Then the relevant elements
in that document against this query are judged and selected by the assessors without
the knowledge of the targeting systems. Besides precision and recall, we also employ
F-Value to be an integrated measure for performance evaluation.

precisionrecall
ValueF

/1/1
2

+
=− (5)

When deciding what fractions of the retrieved elements should be returned to the
users as the answers, we use both fixed thresholds from 0.1 to 0.9 at the increment of
0.1 plus 0.95 and two dynamic thresholds. One such dynamic threshold is the average
of the rank values of all retrieved elements for a query (Avg), and the other is Avg

plus the standard deviation of these values (Std_Dev). The results obtained by these
two methods with various thresholds are illustrated in Tables 1, 2 and 3 for precision,
recall and F-value respectively. For the flexible element retrieval method, we test its
performance on two different sets of index. Each composite element, say a document
or a section, has a title, which is a good indicator for its content. In order to get more
convincing results, we build the first set of index without using the titles. Experiments
indicate that most of the title terms can be re-constructed by our indexing mechanism.
In the second set of index, we add the title for a document or a section to every para-
graph below it as index terms. For TFIDF Para system, the index utilizes the titles as
is done in the second set of index.

Table 1. Comparison of precision

Table 2. Comparison of recall
Threshold TFIDF

Para
Flexible
Retrieval
(with
titles)

Flexible Re-
trieval (without
titles)

improvement
(with titles)
over TFIDF

improvement
(without
titles) over
TFIDF

0.1 0.9350 1.0000 0.8667 6.95% -7.30%
0.2 0.9350 1.0000 0.8667 6.95% -7.30%
0.3 0.9350 1.0000 0.8667 6.95% -7.30%
0.4 0.9021 1.0000 0.8667 10.85% -3.92%
0.5 0.7309 1.0000 0.8500 36.82% 16.29%
0.6 0.5964 0.9500 0.8417 59.29% 41.13%
0.7 0.5571 0.9333 0.7333 67.53% 31.63%
0.8 0.3999 0.8121 0.6583 103.08% 64.62%
0.9 0.2407 0.7793 0.5833 223.76% 142.33%

0.95 0.2401 0.6377 0.5527 165.60% 130.20%
Avg 0.7456 0.9417 0.6800 26.30% -8.80%

Avg+Sdev 0.5670 0.5839 0.5756 2.98% 1.52%

Threshold TFIDF
Para

Flexible
Retrieval
(with ti-
tles)

Flexible Re-
trieval (without
titles)

improvement
(with titles)
over TFIDF

improvement
(without titles)
over TFIDF

0.1 0.3549 0.5263 0.5059 48.30% 42.55%
0.2 0.3948 0.5318 0.5107 34.70% 29.36%
0.3 0.4374 0.5361 0.5338 22.57% 22.04%
0.4 0.5096 0.5361 0.5478 5.20% 7.50%
0.5 0.5158 0.5854 0.5800 13.49% 12.45%
0.6 0.5801 0.5902 0.6159 1.74% 6.17%
0.7 0.6482 0.6864 0.6478 5.89% -0.06%
0.8 0.6487 0.7521 0.7521 15.94% 15.94%
0.9 0.6333 0.8212 0.7855 29.67% 24.03%

0.95 0.6167 0.7917 0.7839 28.38% 27.11%
Avg 0.4045 0.7665 0.6115 89.49% 51.17%

Avg+Sdev 0.5457 0.7790 0.6667 42.75% 22.17%

Table 3. Comparison of F-Values
Threshold TFIDF

Para
Flexible
Retrieval
(with
titles)

Flexible Re-
trieval (with-
out titles)

improvement
(with titles)
over TFIDF

improvement
(without ti-
tles) over
TFIDF

0.1 0.5145 0.6896 0.6389 34.04% 24.17%
0.2 0.5552 0.6943 0.6427 25.07% 15.76%
0.3 0.5960 0.6980 0.6607 17.12% 10.85%
0.4 0.6513 0.6980 0.6713 7.17% 3.07%
0.5 0.6048 0.7385 0.6895 22.11% 14.01%
0.6 0.5881 0.7281 0.7113 23.79% 20.94%
0.7 0.5992 0.7910 0.6879 32.01% 14.80%
0.8 0.4948 0.7809 0.7021 57.84% 41.90%
0.9 0.3488 0.7997 0.6695 129.26% 91.92%

0.95 0.3456 0.7064 0.6483 104.38% 87.57%
Avg 0.5245 0.8451 0.6439 61.14% 22.78%

Avg+Sdev 0.5561 0.6675 0.6178 20.02% 11.09%

From the above tables, we can see clearly that with the various threshold settings
our flexible element retrieval method has a significant improvement in retrieval per-
formance, especially measured by precision and F-Value, over the method of apply-
ing TFIDF measure to paragraph level directly. With respect to F-Value, the average
improvement is 56.02% involving titles, and 40.89% without considering titles. In
both cases of adding title terms into index terms and not dealing with title terms, the
precision of the flexible element retrieval system is much better than the TFIDF Para
system with the average improvement of 48.83% and 41.67% respectively. We at-
tribute the drastic augment in precision to the high quality index terms selected by our
index propagation and pruning algorithm. In addition, the flexible element retrieval
method can return elements with various granularities which may be paragraphs,
sections or even the whole documents depending on the specification of queries. In
contrast, previous passage retrieval methods return only fixed-level passages. How-
ever, there is slight decrease in recall for some threshold settings when using the
index set without adding the title terms. This is caused by our index term selection
threshold, which is somehow too tight such that some proper terms are missed be-
cause their distributions in text do not meet the selection threshold. But we deem that
the decreased recall can be compensated by our interface which allows users to
browse in the document structure freely.

Previous leaf nodes indexing methods make an element available against a query
only if the element contains a part of the query, i.e., a relevant composite element can
be retrieved with all of its descendant elements if and only if each of the descendants
contains at least one query term. This is not the case in many documents so a lot of
relative paragraphs containing no query terms are missed in the TFIDF Para system’s
results. On the other hand, TFIDF Para system introduces much noise into the final
result by adding some paragraphs which do not cover the meaning of the user query
but do contain some query terms. In comparison, with the index propagation and
pruning mechanism, the index with the tree structure in our system can make sure of a

relatively better concept matching. To a composite element, say a section, the appro-
priate index terms would be propagated to it even if only a part of its descendant
elements contain these terms. This index structure ensures the integrity of the
resulting elements.

5.2 Threshold Setting

Threshold setting is very crucial for structured document retrieval to get a set of de-
sirable resulting elements. In previous works, the thresholds are usually fixed [15]. In
our experiments, we find that using a single threshold cannot make the system always
perform well for different queries since the documents vary greatly in structure and
length. We explore the use of dynamic thresholds instead of fixed threshold in our
experiments.

In order to see how various thresholds affect the retrieval performance, we plot the
F-Values obtained with various thresholds in Figure 5. The Figure shows that the
curve generated by our method, especially the curve representing the results obtained
without using title terms, is much flatter than that obtained by the TFIDF Para method.
The performance of the TFIDF Para method varies greatly with the changing of
threshold. The highest F-Value obtained by TFIDF Para is 0.6513(at the threshold of
0.4), which is 177.96% greater than the lowest value of 0.2343 (at no threshold). In
comparison, with the use of title terms, the maximum (at threshold Avg) and the
minimum (at threshold Avg+SDev) F-Values of our method vary only 26.61%; and in
the case of without considering title terms, the variation is only 15.13%. This indi-
cates the fact that our method is less sensitive to threshold setting. We attribute the
robustness to that our method takes full advantage of the document structure to mix
the statistics of term occurrences and distributions in weighting terms.

Comparison of F-Values with Different Selection Thresholds

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
5

av
g

av
g+

sd
ev

no
 th

resho
ld

Thresholds

F-
Va

lu
es

TFIDF Para

Flexible Retrieval (with title
terms)
Flexible Retrieval (without
title terms)

Figure 5. Comparison of F-Values with different thresholds

Moreover, from Figure 5, it is interesting to note that the dynamic thresholds, such
as Avg and Avg+SDev, can produce desirable results. When using the index set with
title terms, the F-Value of the flexible retrieval system achieves the best performance
when using the threshold avg. Our method using the index set without title terms can
also get very good result with the threshold Avg, which is slightly less (9.47%) than
the best one. But due to the sensitivity to the threshold setting, TFIDF Para system
cannot be improved when using dynamic threshold. This testifies that dynamic
threshold is a good alternative for threshold setting for our system since in most cases
we cannot use one threshold to ensure the best performance for all documents and
queries.

6. Conclusion

Passage retrieval based on structural information in documents has long been sug-
gested as effective ways to retrieve elements of a document with finer granularity. In
this paper, we proposed a new hierarchical index propagation and pruning mechanism
for structured documents and realize a flexible element retrieval system based on this
index structure. An index term is propagated to an upper level element in the tree
structure if it represents a more general concept, which is judged by comparing its
statistical information with other peer terms’ weights in that element. Index terms are
distributed across the whole document tree and each element has a list of index terms
which can best represent the concept of that element. The flexible element retrieval
method is dedicated to providing users with the most appropriate elements at any
level. We conducted experiments to evaluate our method in terms of precision and
recall in element level. Experimental results showed that our method significantly
outperformed the method of applying TFIDF measure to only the paragraph level. It
was also found that our method was not sensitive to threshold setting compared to
other passage retrieval methods. Moreover, we observed that dynamic threshold is a
better solution for the threshold setting for element retrieval.

Acknowledgement

The authors would like to express their sincere thanks to Dr. Wei-Ying Ma for his
valuable comments and suggestions to improve this paper.

References

[1] Abiteboul S., Quass D., McHugh J., Widom J. and Wiener J., 1996, The Lorel
Query Language for Semi-structured Data, Department of Computer Science. Stan-
ford University, California, USA, 1996.

[2] Baeza-Yates, R., Navarro, G., 1996, Integrating contents and structure in text
retrieval, ACM SIGMOD Record, 25(1):67-79, March 1996.
[3] Callan, J., 1994, Passage-level evidence in document retrieval. In Proceedings of
the 17 Annual ACM SIGIR Conference on Research and Development in Information
Retrieval, Dublin, Ireland, 1994, Pages 302-310.
[4] Frisse, M, 1988, Searching for Information in a hypertext medical handbook,
Comm. of ACM, 31(7), July 1988, Pages 263-271.
[5] Fuhr, N., Grobjohann, K., 2001, XIRQL: a query language for information re-
trieval in XML documents, In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, New
Orleans, Louisiana, USA, September 2001, Pages 172-180.
[6] Geffet, M., Feitelson, D., 2001, Hierarchical indexing and document matching in
BoW, In Proceedings of JCDL’01, Roanoke, Virginia, USA, 2001, pages 259-267.
[7] Goldman, R., Shivakumar, N., Venkatasubramanian, S. and Garcia-Molina, H.,
Proximity search in databases, In Proceedings of the Twenty-Fourth International
Conference on Very Large Data Bases, New York, USA, August 1998, Pages 26-37.
[8] Kaszkiel, M., Zobel J. and Sacks-Davis R., 1999, Efficient passage ranking for
document databases, ACM Transactions on Information Systems, Vol. 17, No. 4,
October 1999, Pages 406-439.
[9] Kaszkiel, M., Zobel, J., 1997, Passage retrieval revisited, In Proceedings of the
20th Annual ACM SIGIR International Conference on Research and Development in
Information Retrieval, 1997, Philadelphia, PA, USA, Pages 178-185.
[10] Kazai, G., Lalmas, M., and Rölleke, T., 2001, Aggregated Representation for the
Focussed Retrieval of Structured Documents, SIGIR 2001 Workshop, Mathemati-
cal/Formal Methods in IR, New Orleans, 2001.
[11] Lee, Y., Yoo, S. Yoon, K. and Berra, P., 1996, Index structures for structured
documents, In Proc. of the First ACM International Conf. on Digital Libraries, pp.
91-99, 1996, Bethesda, Maryland.
[12] McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J., 1997, Lore:
a database management System for semistructured data, SIGMOD Record, 26(3),
September 1997, Pages 54-66.
[13] Mittendorf, E., and Schauble, P., 1994, Document and Passage Retrieval Based
on Hidden Markov Models, In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
Dublin, Ireland, July, 1994, Pages 318-327.
[14] Myaeng, S., Jang, D., Kim, M. and Zhoo Z., 1998, A flexible model for retrieval
of SGML documents, In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Melbourne,
Australia, 1998, Pages 138-145.
[15] Salton, G., Allan, J. and Singhall, A., 1996, Automatic Text Decomposition and
Structuring, Information Processing and Management. 32(2), Pages 127-138.
[16] Wilkinson, R., 1994, Effective retrieval of structured document, In Proceedings
of the Seventeenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Dublin, 1994, Pages 311-317.

