
Discrete Image Hashing Using
Large Weakly Annotated Photo Collections

Hanwang Zhang†, Na Zhao†, Xindi Shang†, Huanbo Luan‡, Tat-seng Chua†
† National University of Singapore

‡ Tsinghua University
†hanwang,zhaona,shangxin,chuats@comp.nus.edu.sg, ‡luanhuanbo@gmail.com

Abstract

We address the problem of image hashing by learn-
ing binary codes from large and weakly supervised
photo collections. Due to the explosive growth of user-
generated media on the Web, this problem is becom-
ing critical for large-scale visual applications like image
retrieval. While most existing hashing methods fail to
address this challenge well, our method shows promis-
ing improvement due to the following two key advan-
tages. First, we formulate a novel hashing objective
that can effectively mine implicit weak supervision by
collaborative filtering. Second, we propose a discrete
hashing algorithm, offered with efficient optimization,
to overcome the inferior optimizations in obtaining bi-
nary codes from real-valued solutions. In this way, our
method can be considered as a weakly-supervised dis-
crete hashing framework which jointly learns image se-
mantics and their corresponding binary codes. Through
training on one million weakly annotated images, our
experimental results demonstrate that image retrieval
using the proposed hashing method outperforms the
other state-of-the-art ones on image and video bench-
marks.

Introduction

By encoding data into short binary codes, hashing supports
efficient storage of huge amount of data in memory and
make fast similarity search possible. For example, similar-
ity calculation of a query in the database will be reduced
to efficient bit operations, and subsequent ranking in Ham-
ming space can be performed in (sub-) linear (by Hamming
ranking) or even constant time (by lookup table). There-
fore, hashing technique is not only indispensable in process-
ing today’s multimedia content on the Web, where people
usually require to find results from billions of images and
videos within one second (Jegou, Douze, and Schmid 2011;
Wang, Kumar, and Chang 2012), but also in fundamental
machine learning scenarios where fast and scalable kernel or
nearest neighbor constructions are needed (Kulis and Grau-
man 2009; Liu et al. 2012).

Existing hashing methods fall into unsupervised and
(semi-) supervised categories according to whether labeled
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Figure 1: (a) User-generated annotations for images are usu-
ally noisy and incomplete. These examples are from SBU
1M dataset (Ordonez, Kulkarni, and Berg 2011), which is
used as the training data in this paper. (b) The key difference
between traditional and collaborative supervision is that the
latter does not consider unobserved labels as negative. This
is crucial for training on weakly-labeled dataset.

data are required. Unsupervised hashing seeks hash func-
tions that preserve data similarity in the original feature
space. For example, Locality Sensitive Hashing (LSH) de-
signs random projections that map features to binary codes
so that similar data will have same codes with high proba-
bility (Gionis et al. 1999; Kulis and Grauman 2009); while
Spectral Hashing (SH) learns hash functions that preserves
the graph structure of the original feature space (Weiss, Tor-
ralba, and Fergus 2009; Kong and Li 2012; Liu et al. 2011).
However, unsupervised hashing does not guarantee the se-
mantic similarity between data, especially for visual data.
This is due to the well-known semantic gap where the high-
level semantics of visual content often differs from low-level
visual features (Smeulders et al. 2000). Therefore, (semi-
) supervised hashing that exploits semantic label informa-
tion is shown to be effective. Popular methods are Min-Loss
Hashing (Norouzi and Blei 2011), CCA-Hashing (Gong et
al. 2013) and Semi-Supervised Hashing (Wang, Kumar, and
Chang 2012). They generally learn hash functions that mini-
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mize pair-wise similar/dissimilar Hamming distance cost ac-
cording to labeling supervision. Supervised hashing requires
sufficiently large training data to achieve good generaliza-
tions for new samples. However, obtaining high-quality la-
beled data is usually prohibitively expensive in practice.

In recent years, with the surge in popularity of social net-
works, users have generated almost inexhaustible multime-
dia contents with weak annotations such as Flickr (see Fig-
ure 1(a)). Therefore, it is interesting to investigate whether
such large amount of weakly labeled collection can help in
learning image hash codes. In particular, we aim to tackle
the following challenges that few existing supervised hash-
ing techniques address:

• Quantization Loss. The discrete constraints imposed on
binary code learning lead to NP-hard mixed-integer pro-
gramming (Håstad 2001). Therefore, most supervised
hashing methods resort to relaxing the problem by dis-
carding the discrete constraints, e.g., solving continuous
problem and then followed by thresholding or minimiz-
ing quantization loss (Gong et al. 2013). Although relax-
ation makes the original problem feasible, its resulting
hash functions are less effective due to the accumulated
quantization error. In real large-scale applications which
require longer code length for sufficient precision, the per-
formance drop caused by quantization loss will be more
severe.

• Multi- vs. Single-Label. Training images collected from
social networks are multi-labeled in nature. However,
most supervised hashing methods focus on two-class pair-
wise relations; for multi-labeled data, the relation between
two images is no longer the simple similar/dissimilar re-
lations, but the more complex multi-level semantic simi-
larities. Though some works (Zhao et al. 2015; Norouzi,
Blei, and Salakhutdinov 2012) can transform the multi-
level similarities into ranking objectives, they do not scale
up to large-scale training data since they require combina-
torial number of ranking pairs or triplets for training.

• Weak vs. Full Supervision. As compared to full supervi-
sion, where data are fully labeled across all class labels,
weakly labeled data are generally not annotated with com-
plete class labels. This is reasonable since casual users
are reluctant to provide complete tags. As shown in Fig-
ure 1(a), as compared to the entire English vocabulary,
annotations are generally sparse and weak. Unfortunately,
traditional supervised hashing methods strictly enforce
the missing labels as negative, and hence inevitably harm
the subsequent semantic understanding.

In this paper, by addressing the above challenges, we pro-
pose a novel hashing framework for learning hash functions
by using a large and weakly labeled photo collection. We
propose to bring Collaborative Filtering (CF), which has
been successfully applied in discovering the weak relation-
ship between many users and items (Koren, Bell, and Volin-
sky 2009), to analyze the weak but abundant associations
between images and labels and then predict the new (un-
observed) image-label associations (see Figure 1(b)). The
key motivation is that CF can elegantly avoid modeling the

high portion of missing annotations by efficient sparse ma-
trix factorizations, and CF naturally supports multi-labeled
training images. We develop a formulation that alternatively
optimizes the binary codes that involve CF and quantiza-
tion loss. For solution, we propose a discrete optimization
method which directly learns the binary codes and the corre-
sponding hash functions. Thus, the quantization loss is theo-
retically guaranteed to be minimized without any relaxation.
Our algorithm only requires simple matrix multiplications
and inversion of small matrices, and thus can be efficiently
applied in large-scale settings. To demonstrate the effective-
ness of the proposed method, we train our model on a lM
Flickr photo collection with over 30K number of weak la-
bels and test its performance in retrieval on two challeng-
ing image and video benchmarks. Experimental results show
promising improvement over other state-of-the-art hashing
methods.

Related Work
For space limitation, we only review recent hashing meth-
ods that cover the idea of discrete optimization and multi-
label supervision. For comprehensive reviews, please refer
to (Wang et al. 2014; Grauman and Fergus 2013).

The most widely used discrete hashing technique is per-
haps Iterative Quantization (ITQ) (Gong et al. 2013). It min-
imizes the quantization loss by alternatively learning the bi-
nary codes and the hashing function. However, it has two
drawbacks. First, ITQ requires the hashing function be or-
thogonal projection, which is not applicable in many other
supervised objectives. Second, its optimization is a post-
processing after learning the major objective (e.g., geome-
try or semantic preserving similarities). Thus, ITQ is sub-
optimal to the objective task. Discrete Graph Hashing (Liu
et al. 2014a) and Supervised Discrete Hashing (Shen et al.
2015) are recently proposed methods based on discrete opti-
mization. They demonstrate that jointly minimizing quanti-
zation loss and major objective function through discrete op-
timization can improve the hashing performance. Our work
is also an advocate of discrete optimization but focuses on
the problem of weakly supervised learning with multi-label
data. Weakly Supervised Hashing (Mu, Shen, and Yan 2010)
focuses on hashing trained by partially labeled training data,
where the definition of “weak” is more similar to “semi-
supervised” while we focus on “incomplete” labeling. Be-
sides, it needs kernel and CCCP (Concave-Convex Proce-
dure) optimization which does not scale up to large-scale
data and labels. (Gong et al. 2013) tackle multi-labeled data
as cross-modality fusion and apply CCA to obtain the cor-
related representation between the data and label. Then, the
representations quantize to be hashing codes by ITQ. (Zhao
et al. 2015) cast multi-label supervision into ranking super-
vision according to the number of shared labels. However,
these two methods cannot be applied in our weakly labeled
case since the noisy incomplete labels of data will mislead
the training. The idea of using collaborative filtering to han-
dle weakly labeled data is similar to (Liu et al. 2014b). How-
ever, their work neglects to handle the incompleteness of
labels, which is the most essential motivation of collabo-
rative filtering. Based on the above discussion, to our best
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knowledge, this work is the first to learn hash functions for
large-scale, weakly labeled data with explicit discrete op-
timization. Thanks to the large-scale learning, the learned
hash functions can well generalize to test data even if they
are very different from training. This allows us to, say, train
on images but test on videos.

Problem Formulation

We use bold upper-case letter A as matrix, bold lower-case
letter with subscript ai as the i-th column of A, and upper-
case letter with subscript Aij as the entry at i-th row and j-th
column. We have n training images {x1,x2, ...,xn}, where
xi ∈ R

d represents the feature vector in d-dimensional
space, and a column of data matrix X ∈ R

d×n. Our goal is
to generate b hash codes B ∈ {±1}b×n for the images. The
advantage of denoting the binary codes by {±1} is that the
Hamming distance between image i and j is a strict mono-
tonically decreasing function of the vector product bT

i bj

and simplifies the formulation of learning to hash. In this
paper, we only consider linear functions,

bi = sgn(WTxi), (1)

where W ∈ R
d×b is the matrix of b linear hash functions

and sgn(·) is the element-wise function that sgn(x) = 1 if
x > 0 and −1 otherwise. We learn W from the labeled
data. Each image has an m-dimensional annotation (i.e., m
words), ai ∈ R

m, which is a column of label matrix A ∈
Rm×n. Note that the labels are weakly supervised, that is,
most entries of A is empty. In particular, we use Aij = 1 to
denote that image j is labeled with word i and Aij = 0 if
we have no observation on whether image j is labeled with
i. Note that it is the crucial difference from traditional multi-
label supervision which considers Aij = 0 as negative.

Collaborative Supervision and Quantization Loss

We propose to use Collaborative Filtering (CF) to effectively
uncover the semantic relations hidden in weak supervision.
In particular, we focus on the matrix factorization-based CF,
which has been demonstrated to be one of the most success-
ful CF methods (Koren, Bell, and Volinsky 2009). Suppose
ui ∈ R

b and cj ∈ R
b are the latent vectors of label i and

image j, we expect that inner product uT
i cj is large if image

j is annotated with label i, and small otherwise. Although
Collaborative Hashing (Liu et al. 2014b) is also based on this
idea, we argue that counting missing labels caused by weak
supervision as negative labels, i.e., uT

i cj should be small
if Aij = 0, is not reasonable. Therefore, our collaborative
supervision model strictly stick to the definition of classic
CF (Koren, Bell, and Volinsky 2009), by only learning from
the observed annotations (i.e., Aij �= 0),

min
U,C

∥∥(A−UTC
)�A

∥∥2

F
+ λ1R(U) + λ2R(C), (2)

where � is the Hadamard (element-wise) matrix multiplica-
tion, which does not count the loss if Aij = 0; R(·) is any
regularization that scales the resultant U and C.

Given code bi = sgn(ci) = sgn(WTxi), it is easy to
show that the smaller the quantization loss ‖bi − ci‖ is, the

better the resulting binary codes will preserve the desired
solution in Eq. (2). Therefore, we expect that the (linear)
hash functions can minimize the quantization error:

min
W

‖B−WTX‖2F + λ‖W‖2F , s.t. B = sgn(WTX). (3)

where λ‖W‖2F scales the linear model W and hence scales
C. However, it is impractical to directly solve W since
sgn(·) is non-differentiable. As in ITQ (Gong et al. 2013),
we cast the problem into an iterative procedure:

min
W,B

‖B−WTX‖2F + λ‖W‖2F , s.t. B ∈ {±1}b×n. (4)

As compared to the two-step methods such as ITQ which
is sub-optimal, we propose to jointly optimize the collabo-
rative supervision objective in Eq. (2) and the quantization
loss in Eq. (4). The overall objective function is formulated
as:

min
U,B,W

∥∥∥(A−UTB
)
�A

∥∥∥2

F︸ ︷︷ ︸
Collaborative Supervision

+λ1‖B−WTX‖2F︸ ︷︷ ︸
Quantization Loss

+λ2‖W‖2F ,

s.t. B ∈ {±1}b×n, UUT = I.
(5)

Note that we instantiate the regularization for U as the or-
thogonal constraint, which scales U and decorrelate the ba-
sis latent features of the labels as well. This objective func-
tion is not convex, we will design an iterative algorithm to
find a local optimum.

Optimization

The proposed algorithm tackles three challenges in optimiz-
ing Eq. (5): 1) the Hadamard multiplication with A; 2) the
orthogonal constraint UUT = I; and 3) the discrete con-
straint B ∈ {±1}b×n. We will detail our solutions in the
following three subproblems.

Fix B and U, update W This subproblem reduces to
a simple linear regression: minW λ1‖B − WTX‖2F +
λ2‖W‖2F , which can be solved efficiently by

W ←
(
XXT +

λ2

λ1
I

)−1

XBT . (6)

Since (XXT + λ2/λ1I)
−1 is fixed during optimization, we

can precompute and store its inversion for efficiency.

Fix B and W, update U By expanding the quadratic
terms according to U in Eq. (5), the subproblem of updating
U can be rewritten as:

min
UUT=I

F (U) =

−∑
i

( ∑
j∈Ii

Aij(c
T
j + bT

j )

)
ui +

1
2

∑
i

∑
j∈Ii

uT
i bjb

T
j ui

= −tr(ABTU) + 1
2

∑
i

uT
i B̃iui,

(7)

where Ii denotes the nonzero indices in the i-th row of A,
and B̃i =

∑
j∈Ii

bjb
T
j . We apply a gradient descent with

orthogonality constraint (Wen and Yin 2013) to solve the
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challenging quadratic programming in Eq. (7). Suppose the
learning rate is η, the update rule at each iteration is:

UT ← UT − ηR
(
I+

η

2
LTR

)−1

LTUT , (8)

where R = [GT ,UT ], L = [UT ,−GT ], and G is the gra-
dient of F (U): G = −BAT + [B̃1u1, ..., B̃mum]. In prac-
tice, before we start the update iteration, we apply Gram-
Schmidt process to force UUT = I since the orthogonality
constraint may deteriorate after a certain number of itera-
tions due to numeric instability.

Fix U and W, update B This binary constraint in this
subproblem is generally NP-hard (Håstad 2001). Therefore,
many methods solve a relaxed problem by dropping the dis-
crete constraint but obtain a sub-optimal result. Here, we
propose an efficient algorithm that enforces the constraint
to directly achieve discrete B.

Due to the Hadamard product of A in Eq. (5), we cannot
derive a solution for B in matrix formulation. Fortunately,
since column bj independently contributes to the loss, we
can update bj in parallel. Noting the fact that UUT = I
and bT

j bj = b, the expansion of Eq. (5) according to the
j-th column of B is:

const− 2

( ∑
i∈Ij

Aiju
T
i

)
bj + bT

j UUTbj + bT
j bj︸ ︷︷ ︸

constant

−bT
j

( ∑
i/∈Ij

uiu
T
i

)
bj − 2λ1x

T
j Wbj ,

(9)

where Ij is the nonzero indices of the j-th column of A.
Thus, this B-subproblem reduces to maximizing the follow-
ing n independent problems:

max
bj∈{±1}b

1

2
bT
j Hbj + pTbj , (10)

where H =
∑

i/∈Ij
uiu

T
i , pT = λ1x

T
j W +

∑
i∈Ij

Aiju
T
i .

We maximize the function f(b) = 1
2b

THb + pTb in
Eq. (10) iteratively. In particular, at the (t + 1)-th itera-
tion, we maximize a surrogate function f̃t(b) = f(b(t)) +
∇fT (b(t))(b − b(t)), where we denote the maximum so-
lution as b(t+1). Since f(b) is a convex function (H
is semi-positive definite), we have the fact f(b(t+1)) ≥
f̃t(b

(t+1)) ≥ f̃t(b
(t)) = f(b(t)). Therefore, we can ensure

that the sequential solution {b(t)} will iteratively converge
to a local maximum solution to Eq. (10). According to the
above analysis, we can easily derive the update rule for bj

as:

bj ← sgn(I(∇f(bj),bj)) = sgn (I(Hbj + p,bj) , (11)

where I(x, y) is an element-wise function such that
I(x, y) = x if x �= 0 and I(x, y) = y otherwise. The above
update rule states that the updated bj should have the same
signs as ∇f(bj); if the derivative is zero at certain entries,
we do not update the corresponding bits.

Algorithm 1: Discrete Weakly-Supervised Hashing
Input : X ∈ R

d×n: training image features,
A ∈ {0, 1}m×n: weakly-labeled annotation,
b: bit size,
η: learning rate,
λ1 and λ2: trade-off parameter

Output: W ∈ R
d×b: linear hashing model

1 Initialization:
(U(0),B∗) = argminUUT=BBT=I ‖A−UTB‖2F ,
B(0) = sgn(B∗), W(0) is random, t = 0

2 repeat
3 W-subproblem:

W(t+1) ← (
XXT + λ2/λ1I

)−1
XB(t)T ;

4 U-subproblem:

U(t+1)T ← U(t)T − ηR
(
I+ η

2
LTR

)−1
LTU(t)T

according to Eq. (8);
5 B-subproblem (parallel updating):

for j=1 to n do

6 b
(t+1)
j ← sgn

(
I(Hb

(t)
j + p,b

(t)
j

)
according to

Eq. (11);
7 end
8 t ← t+ 1;
9 until converge;

10 return W(t)

Algorithmic Analysis

Initialization Since the proposed formulation in Eq. (6)
is non-convex, the above optimization needs a good choice
of initial solution. Thus, we here suggest a strategy to ob-
tain one. For initializing U and B, we solve an relaxed
minUUT=BBT=I ‖A − UTB‖2F without specially dealing
with the unobserved labels. This problem can be efficiently
solved with SVD (Liu et al. 2014b) if we initialize B or U
by Gram-Schmidt process. Then, the initialization of B is
B ← sgn(B). The underlying heuristic of this initialization
is that the quantization loss minimization is meaningless un-
less we have already obtained a good real-valued solution of
the major objective.

Complexity In training stage, the major space consump-
tion is the image feature matrix X which requires O(dn).
Fortunately, state-of-the-art image features are usually
sparse (Donahue et al. 2013). In our case, it requires only
3-GB memory to store 1M images. Other space consump-
tions including U, B, and the precomputed XXT in Eq. (6)
and G in Eq. (8) are O(bn + bm + bd), which is moderate
since d and b are small. At each training iteration, the time
consumption for W-subproblem in Line 3 Alg (1) is only
O(d2bn) since the inversion can be computed off-line. For
U-subproblem in Line 4, it requires O(b3 +mb2) for b× b-
size eigen-decomposition and matrix multiplications. For B-
subproblem in Line 5, it requires O(sb2 + db) for construct-
ing H and p, where s = O(n) is the number of nonzero
entries in A. For the update rule, it requires only O(b2).
By parallel updating, it requires O(np (sb

2 + db)) in total,
where p is number of parallel computing threads. Based on
the above analysis, we can see that the time complexity of
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Figure 2: Convergence curve of the objective function using
a sub-sampled dataset with 0.1M data, b = 32, λ1 = 1,
λ2 = 1e− 4.

our algorithm is linear to the sample size: O(Tn), where T
is the number of iterations. In our experiments, we found
that we usually needed T ≤ 50 for convergence. On our In-
tel i7 6-core machine with 3.0Ghz CPU and 64-GB memory,
we needed about 1 hour per iteration for training 1M data.
In testing stage, we only needed to store W of the size d× b
to generate hash codes for images.

Convergence Due to space limit, we omit rigorous proof
for convergence. Generally, one can easily complete the
proof based on the fact that the proposed algorithm mono-
tonically decreases towards the lower-bounded objective
function. We show the convergence of the algorithm in Fig-
ure 2, which implies that proper initialization is necessary.

Experiments

Dataset

For training the hashing function, we used a large weakly-
annotated image dataset called SBU (Ordonez, Kulkarni,
and Berg 2011). It contains 1M images with user-generated
captions. For each image, the words of caption can be con-
sidered as the observed labels. After removing stop- and
low-frequency words, we had 30,456 labels in total, i.e., ma-
trix A is of the size 30, 456×1M . In order to simulate prac-
tical search scenario, where application database is usually
different from training, we used two additional benchmarks
for testing: NUSWIDE (Chua et al. 2009) and CCV (Jiang
et al. 2011). Note that our train/test split is more challeng-
ing than traditional split which is done on the same dataset.
NUSWIDE and CCV respectively contain 269,648 images
and 9,317 videos across 81 and 20 semantic classes. Note
that the number of data in each class varies from tens to thou-
sands. For fair comparison, queries were uniformly sampled
from each class. This gave rise to 4,860 and 3,560 queries
for NUSWIDE and CCV, respectively. For each dataset,
database was considered as the whole dataset except the
query. We sampled 10 query sets for averaging the results.
We used the advanced DeCAF deep learning visual features
for images (Donahue et al. 2013) and the feature dimension
was d = 4, 096. In particular, for each video, we sampled
1 frame image in every 5 frames and the feature vector was
the mean of all the sampled frames.

Search Protocol and Metric

We adopted Hamming ranking as our search protocol. All
the data in the database are ranked according to their Ham-
ming distance from the query and the top ranked data are re-
turned as the results. Another widely used protocol is Hash
lookup, where a lookup table is constructed and results are
data within a Hamming radius (e.g., 2). Although Hamming
ranking requires linear search time as compared to the con-
stant time in Hash lookup, the former provides better quality
measurement of the learned Hamming embedding while the
latter only focuses on search speed and fails to handle the
case that the bit size is larger than 32 (Wang, Kumar, and
Chang 2012). Since our testing data are labeled, for evalua-
tion metric, we used the popular Precision@K (K from 1 to
500) with class labels as the groundtruth (Gong et al. 2013).

Compared Methods

We compared the proposed hashing method: Ours, against
6 state-of-the-art hashing methods:
LSH (Gionis et al. 1999): Locality Sensitive Hashing. This
method models hashing function W as a Gaussian random
matrix.
PCA-ITQ (Gong et al. 2013): this method uses W =
WpcaR, where Wpca is the PCA projection and R is a rota-
tion matrix learned by their proposed iterative quantization.
CCA-ITQ (Gong et al. 2013): this method replaces the PCA
projection to CCA projection Wcca, which is learned from
two data modalities: the image feature X and the label A.
DGH (Liu et al. 2014a): the recently proposed Discrete
Graph Hashing. This method can be considered as an ad-
vanced version of Spectral Hashing (Weiss, Torralba, and
Fergus 2009) since it supports large-scale training data and
discrete minimization for quantization loss.
CH (Liu et al. 2014b): Collaborative Hashing. It applies col-
laborative filtering for training hash functions. In particular,
we modified this method by applying the collaborative su-
pervision used in this paper. Note that the original CH ne-
glects specially modeling the unobserved labels.
SDH (Shen et al. 2015): Supervised Discrete Hashing. It
considers data hashing codes as the features for multi-label
supervised training, through which the hashing functions
can be learned simultaneously.
Among the above methods, LSH, PCA-ITQ and DGH are
unsupervised; CCA-ITQ, CH and SDH are supervised. Al-
though there are many other supervised hashing methods,
they were not compared since they cannot be easily ex-
tended to multi-label training data. Except LSH and CH,
the rest of them have discrete optimization. We implemented
these methods using the codes provided by the authors with
default parameters. We used L2-Baseline which performs
search using �2-norm Euclidean distance between original
features as the baseline.

Parameter Sensitivity

We empirically set λ2 to 1e − 4 since we did not find any
performance drop around 1e − 4. As compared to λ2, λ1 is
a more crucial trade-off parameter since it balances between
the supervised loss and the quantization loss. As in Figure 5,
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Figure 3: Performance (Precision@K) of various methods with different bit sizes on NUSWIDE.
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Figure 4: Performance (Precision@K) of various methods with different bit sizes on CCV.
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Figure 5: Mean Precision from top 1 to top 500 retrieval
results on the two datasets with various bit size and λ1.

we plot the mean precision, averaged from top 1 to 500, of
various bit size and λ1. We can find that our algorithm is
not very sensitive to λ1. Therefore, in all experiments, for a
certain bit size, we set λ1 to the value with best performance.
For the learning rate η used in U-subproblem, we initially
set it to 1e − 3 and used a dynamic learning rate updating
heuristic (Qian 1999).

Results

Figure 3 and Figure 4 illustrate the retrieval results of var-
ious methods using different bit sizes on both datasets. We
can see that our proposed method considerably outperform
the other methods, especially the recently proposed CH and
SDH. This demonstrates the effectiveness of our two main
proposals: collaborative supervision for weak labels and dis-
crete hashing.

First, on both datasets and all bit sizes, we can see that
the state-of-the-art supervised methods are generally better
than the unsupervised methods. In particular, our method
outperforms the recently proposed and competitive super-
vised method: SDH. Although we both approach discrete
optimization, SDH adopts the traditional supervision, which
is confused by the unobserved weak labels. This may also
explain why CCA-ITQ performs the worst among super-
vised methods since it directly attempts to model the explicit
correlations between image features and label vectors.

Second, as compared to CH, the reason why our method
performs much better is discrete optimization. Note that our
implementation for CH is the same as the proposed method
but without discrete optimization. This demonstrates the ef-
fectiveness of minimizing quantization loss in hashing.

Third, we can see that with longer bit size, the super-
vised hashing performance can even outperform L2 base-
line. That is to say, through supervised training, we can
perform more accurate retrieval with much lower time and
storage cost. This demonstrates the effectiveness of super-
vised hashing using large training data. Note that the testing
datasets NUSWIDE and CCV differ from the training set:
SBU, therefore, our promising results on this challenging
task offers large potentials in practical hashing applications.

Conclusions

In this paper, we explored a novel hashing framework that
uses discrete optimization for learning large and weakly-
labeled data. We argued that this is an essential but chal-
lenging task since although large training data is beneficial
for supervised hashing , it rarely works because it fails to
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resolve the noisy and sparse nature of weak supervision. We
tackled this challenge by adopting the key idea of how col-
laborative hashing can successfully handle weak relation-
ships. By addressing this motivation, we developed a for-
mulation which jointly models the collaborative supervision
and quantization loss. In particular, we proposed an efficient
algorithm that explicitly uses discrete optimization to avoid
unnecessary quantization loss during optimization. Through
training on one million weakly annotated images and testing
on two challenging benchmarks, our method considerably
outperformed various state-of-the-art hashing techniques.
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