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ABSTRACT. We propose a concept-centered approach that combines region- 
and image-level analysis for automatic image annotation (AIA). At the region 
level, we group regions into separate concept groups and perform concept-
centered region clustering separately. The key idea is that we make use of the 
inter- and intra-concept region distribution to eliminate unreliable region 
clusters and identify the main region clusters for each concept. We then derive 
the correspondence between the image region clusters and concepts. To further 
enhance the accuracy of AIA task, we employ a multi-stage kNN classification 
using the global features at the image level. Finally, we perform fusion of 
region- and image-level analysis to obtain the final annotations. Our results 
have been found to improve the performance significantly, with gains of 18.5% 
in recall and 8.3% in “number of concepts detected”, as compared to the best 
reported AIA results for the Corel image data set. 

Keywords: Automatic Image Annotation, multi-stage kNN, Kullback-Leibler 
divergence 

1. INTRODUCTION 

Conventional content-based image retrieval (CBIR) systems require users to retrieve 
images based on low-level content attributes. Ideally, the users would prefer to query 
an image database by issuing text-based semantic queries. To facilitate text-based 
retrieval of images, the images must be annotated with a set of concepts. The 
automatic image annotation (AIA) involves the analysis of low-level content features 
of images at the regions/blocks or image level to infer the presence of semantic 
concepts. 

AIA has received extensive attention recently. Starting from a training set of 
annotated images, many statistical learning models have been proposed in the 
literature to associate low-level visual features with semantic concepts 
[1,3,5,17,18,19]. The methods can be divided into two groups: the image-based vs. 
the region-based methods. The image-based methods [1] attempt to directly label 
images with concepts based on the selection of low level global features. These 
methods result in low-cost frameworks for feature extraction and image classification. 
But using only global visual properties limit their effectiveness to mostly scene-type 



concepts and are not effective for object-type concepts. The second group is the 
region-based methods [3,5,9,10,11,12,17,18,19] that are based on the idea of first 
dividing the images into regions or fixed-sized blocks. A statistical model is then 
learnt from the annotated training images to link image regions directly to concepts 
and use this as the basis to annotate testing images. Most existing region-based 
methods adopt the discrete approach by tackling the problem in two steps: (1) 
clustering all image regions to region clusters; and (2) finding joint probability of 
region clusters and concepts. The performance of region-based methods is strongly 
influenced by the quality of clustering and consequently the linking of region clusters 
and concepts, both of which are unsatisfactory. 

One of the problems of current AIA systems is that the analysis is carried out at the 
region or image level. The region level analysis is limited by the accuracy of 
clustering, and is able to capture mostly object level information. On the other hand, 
image level analysis is simple but is able to capture only global scene level contents. 
To overcome the problems of both techniques and to enhance the overall AIA 
performance, we need to analyze image semantics at multiple levels, the content 
(region) and concept (image) levels. Thus in this research, we propose a novel 
concept-centered framework to facilitate effective multi-level annotation of images at 
region and image levels. The main techniques and contributions of our work include: 
(1) We propose a novel concept-centered region-based clustering method to tackle the 
correspondence between the concepts and regions. The process utilizes intra- and 
inter-concept region distributions to automatically identify the main region clusters 
(blobs) for each concept, obtain the representative region clusters and typical features 
for each concept, and use the information to annotate the regions. (2) We perform 
multi-level annotation by fusing the results of region-level and image-level 
annotations. 

The rest of the paper is organized as follows. Section 2 presents a brief overview of 
the design of the system. Section 3 discusses the region-based concept-centered 
technique. Section 4 describes the image-based multi-stage kNN classifier. In Section 
5, the image- and region-level results are fused in two stages to produce the multi-
level semantics for the testing images, along with results and discussions. Finally 
Section 6 concludes the paper. 

2. SYSTEM DESIGN 

To address the limitations of current AIA systems, our concept-centered AIA system 
aims to solve the correspondence between image regions and concepts at region-level 
analysis, and then combine region- and image-level analysis for automatic image 
annotation, which produces multi-level (both concept level and content level) 
semantics of images. The overall system consists of 4 main modules as shown in 
Figure 1. 

As with most research in AIA, we consider the case where the concepts are 
annotated at the image level. Hence each segmented region within an image will 
inherit all the concepts annotated for that image. As only one or two concepts are 
likely to be relevant to a particular region, the problem then becomes one of 



identifying the main concept associated with each region, while eliminating the rest of 
co-occurring concepts at the image level. To tackle the problem, Module 1 performs 
concept-centered region clustering to identify the main region clusters for each 
concept by taking into consideration the inter- and intra-region distributions. The 
main region clusters for each concept are used later as the basis to associate regions to 
concepts. To incorporate image level AIA, Module 2 performs multi-stage kNN 
classification at the image level to deduce the most similar images. This is based on 
the assumption that images with same semantic contents usually share some common 
low-level features. The kNN of similar images are used for refining region-level 
candidates and performing image-level annotation. Next, we perform the fusion of 
region- and image-level results in two stages. Module 3 performs an essentially 
region-based AIA that uses multi-stage kNN to constrain the results. We expect the 
outcome to be high precision annotation at the region-level. Module 4 fuses the AIA 
results of image-level and region- level method using Bayesian method. We expect 
the eventual results at image-level to have high recall while maintaining the precision 
of the region based method. 
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Figure 1. Concept-centered AIA system workflow 

3. CONCEPT-CENTERED REGION CLUSTERING 

3.1 Overview of Concept-Centered Region-Based Clustering 

At the region level, we first perform the segmentation of training images into regions 
and merge the smaller regions into modified regions using the k-Means method. As 
we do not know which specific concept is relevant to which region, we simply 
associate all annotation concepts for the training image to all its regions. The existing 
methods treat an image as consisting of a set of region clusters and analyze the 
semantic concept of each region cluster to build a vocabulary of concepts to represent 
the whole image. Two difficulties arising from this approach are: (1) how to generate 
the region clusters of the whole image set; and (2) how to analyze the semantic 



contents of each region cluster with respect to a set of pre-defined concepts. To 
overcome the first problem, instead of performing clustering of all regions across all 
concepts as is done in most current approaches, we group regions into separate 
concept groups based on the concepts that they have inherited. By specifically focus 
on the regions that have the possibility of representing this concept, we hope to 
minimize the noise resulting from clustering of heterogeneous regions across all 
concepts using low-level features. At the concept level, we perform clustering of the 
regions from different images using the k-Means clustering and Davies-Bouldin 
validation method to group similar regions to clusters. Optimal k for k-Means is 
decided by the following steps: We run the k-Means on the given dataset multiple 
times for different k, and the best of these is selected based on sum of squared errors. 
Finally, the Davies-Bouldin index  
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is calculated for each clustering [15], where  δ(Xi,  Xj)  defines  the  intercluster  
distance  between clusters Xi and Xj; D(Xi) represents the intracluster distance of 
cluster Xi, and k is the number of clusters. Small index values correspond to good 
clusters, that is to say, the clusters are compact and their centers are far away from 
each other.  Therefore, argmink(DB) is chosen as the optimal number of clusters, k.  
Consequently, we obtain several clusters under each concept.  

  

blob 1

blob 2 blob 3  

Figure 2. Example of region clusters for the concept “Building” 

Figure 2 shows an example of the region clusters generated for the concept 
“Building”. As can be seen, blob 1 (or region cluster 1) is composed of the 
representative regions for the “Building” concept, while the others blobs may include 
regions for co-occurring concepts or a mixture of them. We call blob 1 the “main 
blob” of concept “Building”. In this research, we intend to automatically identify the 
main blobs of an individual concept. The main blobs found can then be used as the 
basis for region annotation, image annotation, and even image retrieval. The 
identification process involves two stages. First we eliminate the unreliable clusters, 
which are those that clearly do not represent the current (base) concept. Their 
elimination reduces the possible clusters for main cluster identification. Second, we 



identify the main blobs, which are the most representative of the base concept. The 
following sections describe the details of these two identification processes. 

3.2 Unreliable Blob Identification

We aim to utilize the concept co-occurrence and the relationship of intra-concept 
region clusters to find the most unreliable region blobs, , under the base concept T. 
Let W(T) represent the related (co-occurring) concepts with T, including T itself. The 
algorithm is as follows: 

uni

First, we cluster regions of training image set I(T) into L blobs R(I(T)i), i=1,…,L.  
Second, given an training image set I(G) where G∈W(T)\T, we remove part of the 

images in I(G) that correspond to any concepts in W(T)\G. The remaining image set 
is: 
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Here, G is the only shared concept between I(T) and SG. This means that we have 
eliminated the probabilities that images in I(T) would be similar with images in SG 
due to other concepts beside G.  

Third, we cluster the regions of SG into optimal number of clusters , 
j=1,…,J, and compute the Euclidean distance of intra-clusters: 
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At )(minarg Λi , that region blob i under I(T) is most similar to certain blob under SG. 
We increment Vi at )(minarg Λi , where Vi measures the degree of unreliability of 
blob i.  

Fourth, we repeat the second and third steps on all related concepts W(T)\T. The 
result  
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is the most unreliable blob for the base concept T.  

3.3 Main Blob Identification

Next we aim to identify the main blob ，which best represent the semantic 
meaning within the blobs of the base concept:  
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First we investigate two properties of the distributions of regions in blobs under the 
base concept and all related concepts: (1) the representative regions are compactly-
clustered under the base concept; and (2) they are dispersed under other related 
concepts. Figure 3 presents an example of region data projected in 2-D space to 



explain these properties. We assume that there are four kinds of region data, shown in 
different symbols, representing concepts A, B, C and D. Figures 3(a) and 3(b) 
respectively show the region distributions under concepts A and B. The ellipses 
represent the region blobs. It is observed that the representative regions for concept A 
are compactly-clustered under concept A, while dispersed under concept B, and vice 
versa. Also the representative regions for concept B in the blob of concept A are only 
part of the regions in the main blob under B. From the 1st property, regions of main 
blob under the base concept are distributed to more region blobs under related 
concepts than the non-representative regions. From the 2nd property, regions of non-
main region blobs under the base concept are distributed to only one or few region 
blobs under their correspondent concepts.  
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Figure 3. The distribution of regions under concepts A and B 

Given the base concept T, after the elimination of unreliable blob , the 
remaining 

uni
L′  region blobs are R(I(T)i), Li ′= ,...,1 . Also, for every related concept of 

T, B ∈ W(T)\T, we group and cluster the regions under related concept B into J 
region blobs R(I(B)j), j=1,…,J. Then we build two functions, f and g, which focus on 
the relationship of region distribution by exploiting the above two properties to decide 
the main blobs.  makes use of Kullback-Leibler (K-L) divergence [13] to 
measure how well the distribution in blob set of related concepts matches the 
distribution in certain blob i of the base concept. On the other hand,  uses the 
distribution factor to measure the degree of distribution diversity of the image regions 
from blob i of base concept to the blobs of related concepts. 
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In probability theory and information theory, the K-L divergence is a natural 
distance measure from a "true" probability distribution p to an "arbitrary" probability 
distribution q.  is defined by the sum of all the related concepts on the mean K-L 
divergence between a certain blob i in the base concept T and the blob set blobs(B) in 
a related concept B:  
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 where  is the distribution of R(I(T)iq i),  is the distribution of R(I(B)jp j), and 
||blobs(B)|| is the number of blobs in concept B.  



For probability distributions p and q of a discrete variable the K-L divergence 
between p and q with respect to p is defined to be:  
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The K-L divergence is the expected amount of information that a sample from p 
gives of the fact that the sample is not from distribution q. From the above 
distribution property, the regions in the main blob of base concept, comparing with 
the regions in the other blobs, should be distributed more universally in the blobs of 
all the related concepts. So the main blob should get the minimization of f(i), which 
means:  
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 On the other hand, for every other concept B, we record how the shared regions 
between T and B are distributed under each concept. To do this, we first compute 
V(i,j), which is set to one if the region cluster j of concept B has share regions with 
region cluster i of base concept T. Otherwise V(i,j) is set to zero. We then compute the 
distribution parameter , which is the number of region clusters in B that has 
shared regions with cluster i of base concept T, as follows:  
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After analyzing all the related concepts, the region clusters that achieve the 
maximum of that sum of  on all related concepts B will be considered as the 
main blob of the base concept T: 
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Finally, we fuse the results for main blob derived from the two functions:
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where F(·) is simply an union operation in our test.  
After we obtain the representative regions and typical features from the main blobs 

for each concept, we could use the information to annotate the regions and images. It 
will be discussed in Section 5. 

4 IMAGE-BASED MULTI-STAGE KNN CLASSIFIER 

Beside the region-level analysis, we perform image-level analysis using a multi-stage 
kNN technique. Since images with same semantic meaning usually share some 
common low-level feature, the multi-stage kNN can be used to perform image 
matching for annotation at the image level.  



As illustrated in Figure 4, the multi-stage system can be viewed as a series of 
classifiers, each of which provides increased accuracy on a correspondingly smaller 
set of entities, at a constant classification cost per stage. It can exceed the 
performance of any of its individual layers only if the classifiers appearing at different 
layers employ different feature spaces [7]. For effectiveness of multi-stage kNN 
classifier, we arrange the features in the order that make the classifier at the 1st stage 
to have high sensitivity (few false negatives), while the classifier at the 2nd stage to 
have high specificity (few false positives) but less sensitivity. As compared to color 
histogram, the auto-correlogram is more stable to changes in color, large appearance, 
contrast and brightness. It thus serves as a good 1st stage feature to avoid removing 
too many false negatives, paving the way for the use of simple edge and color 
histogram features in the 2nd stage. So for the 1st stage, we adopt HSV auto-
correlogram; while for 2nd stage, we use the HSV histogram combining with edge 
histogram. More specifically, we select the top 100 kNN images for the 1st stage and 4 
nearest images for the 2nd stage.  
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Figure 4. Image-based multi-stage kNN classifier 

5 TWO-STAGE MULTI-LEVEL FUSION AND RESULTS 

We fuse the region- and image-based results in two stages to perform automatic 
image annotation. 

5.1 Fusion Stage I − Fusion of Region-Based Methods with Multi-stage kNN 

The main objective of region-level analysis is to enhance the ability of capturing as 
well as representing the focus of user’s perceptions to local image content. We have 
obtained the main region blobs of each concept for the training images in Section 3.3. 
The explicit concept of each training region can be determined from which main 
region blobs that it belongs to. During testing, in order to refine the possible concept 
range of the test images, we first apply the multi-stage kNN classifier as described in 
Section 4 to find several most similar training images for each test image. After that, 
for each region in the test image, kNN is again applied at the local region feature level 
to find the nearest 2 regions from among the regions of the most similar training 
images. The concepts of these two nearest training regions are assigned as annotated 
concepts of the test image region.  



One advantage of region-based method is that it provides annotation at the region 
level. It allows us to pin-point the location of region representing each concept. It thus 
provides information beyond what is provided by most image-level annotation 
methods. The use of kNN to narrow the search range further enhances the precision. 
We thus expect the overall fusion to have good precision. 

As with all the other experiments [3,5,6], we use the Corel data set that has 374 
concepts with 4,500 images for training and 500 for testing. Images are segmented 
using the Normalized Cut [16] and each region is represented as a 30 dimensional 
vector, including region color, average orientation energy and so on [3]. The results 
are presented based on the 260 concepts which appear in both the training and test 
sets. Annotation results for several test images are showed in Figure 5. The concepts 
shown in the rectangles are the results of region annotation. Ground truth is shown 
under each image for comparison. The results show that our region-based technique 
could provide correct annotation at the region level in most cases.  
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Figure 5．  Region annotation for images 

Measuring the performance of methods that predict a specific correspondence 
between regions and concepts is difficult. One solution, applicable to a large number 
of images, is to predict the concepts for the entire images and use the image level 
annotation performance as a proxy. For each test image, we derive its annotation 
concepts by combining the concepts of each region that it contains and use this as the 
basis to compute the precision and recall. The number of concepts for each image is 
not restricted here. Table 1 shows the results of image level annotation in terms of 
average precision (P), recall (R), and F1 over all the concepts, and the number of 
concepts detected (# of Det.), i.e. concepts with recall > 0. The results show that our 
region-based techniques could achieve an average F1 measure of 0.20, with 114 
detected concepts that have at least one correct answer. 

Table 1.  Result of region-based AIA 

P R F1 # of Det. 
0.19 0.21 0.20 114 



In comparison with the state-of-the-arts systems listed in Table 3, the performance 
of the region-based method is better than most except the top two systems. It should 
be noted that our region-based method provides annotation at region level as shown in 
Figure 5 instead of just at image level without location information. To enhance the 
annotation performance at the expense of location, we explore an image-based AIA 
approach in next Section. 

5.2 Fusion Stage II − Fusion of Region-Based AIA and Image-Based AIA  

At the image level, we first perform the multi-stage kNN to obtain several nearest 
training images for each test image. We sum up the concepts of these training images 
to arrive at a frequency measure for each available concept. To annotate the test 
image, we choose the highest frequency concepts until the desired number of concepts 
is reached. For those concepts with equal frequency, we give priority to those 
belonging to the annotation of the nearer image.  
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Figure 6. Annotation results of image- and region-based methods 

To illustrate the results of image-based method against that of the region-based 
method obtained in Section 5.1, Figure 6 shows some automatic annotation results of 
both methods. Under each image, the ground truth are shown at the top line, followed 
by the annotation results of the image-based method in the middle line, with the 
results of region-based method at the third line. Concepts in bold correspond to 
correct matches. It can be seen that global feature-based results at image level are 



more concerned with abstract background and frequently occurring concepts, while 
local region based results are more concerned with specific object-type concepts. It is 
clear that both methods produce different results, and we should be able to improve 
the results further by combining both. 

Thus, in order to improve the recalls of the overall performance, we employ 
Bayesian fusion method [4] to perform the fusion. We expect the final results to have 
better recall while maintaining high precision. 

We use the same Corel data set as described in Section 5.1. Table 2 shows the 
results of AIA for region-based (R_B), image-based (I_B), and fusion (R+I) methods. 
The desired number of concepts for each test image is set to 8. We can see from Table 
2 that the fusion improves the overall performance, with the F1 measure improve 
steadily from 0.20 (region-based method) to 0.24 (image-based method) and then to 
0.26 (fusion of both). The number of detected concepts reaches 144 for the fusion 
approach. It is clear that fusion improves the performance for either the region-based 
AIA or image-based AIA. Figure 6 gives examples of the concepts annotated using 
the fusion approach (shown in line 4 under each image). It can be seen from the 
examples that our proposed method is able to infer more correct annotations. 

Table 2.  Results of fusing region and image-based AIA 

 P R F1 # of Det. 
R_B 0.19 0.21 0.20 114 
I_B 0.23 0.26 0.24 122 
R+I 0.23 0.32 0.26 144 

Comparison with published results for same data set is listed in Table 3. The 
results show that our proposed method outperforms the continuous relevance model 
and other models on the Corel data set. It achieves the best average recall and best 
number of detected concepts. At the same time, our precision is not too bad. Overall, 
it improves the performance significantly by 18.5% in recall and 8.3% in the “number 
of concepts detected”, as compared to the best result that has been reported. 

Table 3.  Comparison with other results 

Method P R # of Det.
TM [3] 0.06 0.04 49 

CMRM [17] 0.10 0.09 66 
ME [18] 0.09 0.12 N.A. 

CRM [19] 0.16 0.19 107 
MBRM [5] 0.24 0.25 122 
MFoM [6] 0.25 0.27 133 
Proposed 0.23 0.32 144 

6 CONCLUSION 

In this paper, we proposed a novel concept-centered region-based approach for 
correlating the image regions with the concepts, and combining region- and image-



level analysis for multi-level image annotation. At the region level, we employed a 
novel region-based AIA framework that centers on regions under a specific concept to 
derive region semantics. Our system aims for automatic identification of the main 
region blob under each concept by using inter- and intra-concept region distribution. 
The main region blobs found are then used to determine the explicit correspondence 
of region to concept. At the image level, we applied a multi-stage kNN classifier 
based on global features to help region-level AIA. Finally, we performed the fusion of 
region- and image-based AIA. The results have been found to outperform previously 
reported AIA results for the Corel dataset. 

For future work, we plan to further explore the integration of region- and image-
based techniques for image/video classification and retrieval. 
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