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Abstract—The vocabulary gap between health seekers and providers has hindered the cross-system operability and the inter-user

reusability. To bridge this gap, this paper presents a novel scheme to code the medical records by jointly utilizing local mining and

global learning approaches, which are tightly linked and mutually reinforced. Local mining attempts to code the individual medical

record by independently extracting the medical concepts from the medical record itself and then mapping them to authenticated

terminologies. A corpus-aware terminology vocabulary is naturally constructed as a byproduct, which is used as the terminology space

for global learning. Local mining approach, however, may suffer from information loss and lower precision, which are caused by the

absence of key medical concepts and the presence of irrelevant medical concepts. Global learning, on the other hand, works towards

enhancing the local medical coding via collaboratively discovering missing key terminologies and keeping off the irrelevant

terminologies by analyzing the social neighbors. Comprehensive experiments well validate the proposed scheme and each of its

component. Practically, this unsupervised scheme holds potential to large-scale data.

Index Terms—Healthcare, medical terminology assignment, global learning, local mining, question answering
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1 INTRODUCTION

INFORMATION technologies are transforming the ways
healthcare services are delivered, from patients’ passively

embracing their doctors’ orders to patients’ actively seeking
online information that concerns their health. This trend is
further confirmed by a national survey conducted by the
Pew Research Center1 in Jan 2013, where they reported that
one in three American adults have gone online to figure out
their medical conditions in the past 12 months from the
report time.

To better cater to health seekers, a growing number of
community-based healthcare services have turned up,
including HealthTap,2 HaoDF3 and WebMD.4 They are dis-
seminating personalized health knowledge and connecting
patients with doctors worldwide via question answering [1],
[2]. These forums are very attractive to both professionals
andhealth seekers. For professionals, they are able to increase
their reputations among their colleagues and patients,
strengthen their practical knowledge from interactions with

other renowned doctors, as well as possibly attract more
new patients. For patients, these systems provide nearly
instant and trusted answers especially for complex and
sophisticated problems. Over times, a tremendous number
of medical records have been accumulated in their reposi-
tories, and in most circumstances, users may directly
locate good answers by searching from these record
archives, rather than waiting for the experts’ responses or
browsing through a list of potentially relevant documents
from the Web.

In many cases, the community generated content, how-
ever, may not be directly usable due to the vocabulary gap.
Users with diverse backgrounds do not necessarily share the
same vocabulary. Take HealthTap as an example, which is a
question answering site for participants to ask and answer
health-related questions. The questions are written by
patients in narrative language. The same question may be
described in substantially different ways by two individual
health seekers. On the other side, the answers provided
by the well-trained experts may contain acronyms with
multiple possible meanings, and non-standardized terms.
Recently, some sites have encouraged experts to annotate the
medical records with medical concepts. However, the tags
used often vary wildly and medical concepts may not be
medical terminologies [3]. For example, “heart attack” and
“myocardial disorder” are employed by different experts to
refer to the same medical diagnosis. It was shown that the
inconsistency of community generated health data greatly
hindered data exchange, management and integrity [4].
Even worse, it was reported that users had encountered
big challenges in reusing the archived content due to the
incompatibility between their search terms and those
accumulated medical records [5]. Therefore, automatically
coding the medical records with standardized terminologies
is highly desired. It leads to a consistent interoperable way

1. http://pewinternet.org/Reports/2013/Health-online.aspx.
2. https://www.healthtap.com/.
3. http://www.haodf.com/.
4. http://www.webmd.com/.
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of indexing, storing and aggregating across specialties
and sites. In addition, it facilitates the medical record
retrieval via bridging the vocabulary gap between queries
and archives.

It is worth mentioning that there already exist several
efforts dedicated to research on automatically mapping
medical records to terminologies [6], [7], [8], [9], [10], [11].
Most of these efforts, however, focused on hospital gener-
ated health data or health provider released sources by uti-
lizing either isolated or loosely coupled rule-based and
machine learning approaches. Compared to these kinds of
data, the emerging community generated health data is
more colloquial, in terms of inconsistency, complexity and
ambiguity, which pose challenges for data access and ana-
lytics. Further, most of the previous work simply utilizes
the external medical dictionary to code the medical records
rather than considering the corpus-aware terminologies.
Their reliance on the independent external knowledge may
bring in inappropriate terminologies. Constructing a cor-
pus-aware terminology vocabulary to prune the irrelevant
terminologies of specific dataset and narrow down the can-
didates is the tough issue we are facing. In addition, the
varieties of heterogeneous cues were often not adequately
exploited simultaneously. Therefore, a robust integrated
framework to draw the strengths from various resources
and models is still expected.

We propose a novel scheme that is able to code the
medical records with corpus-aware terminologies. As
illustrated in Fig. 1, the proposed scheme consists of two
mutually reinforced components, namely, local mining
and global learning. Local mining aims to locally code the
medical records by extracting the medical concepts from
individual record and then mapping them to termino-
logies based on the external authenticated vocabularies.
We establish a tri-stage framework to accomplish this
task, which includes noun phrase extraction, medical
concept detection and medical concept normalization. As
a byproduct, a corpus-aware terminology vocabulary is
naturally constructed, which can be used as terminology
space for further learning in the second component.

However, local mining approach may suffer from the
problem of information loss and low precision due to the
possible lack of some key medical concepts in the medical
records and the presence of some irrelevant medical con-
cepts. We thus propose global learning to complement
the local medical coding in a graph-based approach. It
collaboratively learns missing key concepts and propa-
gates precise terminologies among underlying connected
records over a large collection. Besides the semantic simi-
larity among medical records and terminology-sharing
network, the inter-terminology and inter-expert relation-
ships are seamlessly integrated in the proposed model.
The inter-terminology relationships are mined by exploit-
ing the external well-structured ontology, which are able
to alleviate the granularity mismatch problems and
reduce the irrelevant sibling terminologies. The inter-
expert relationships are inferred from the experts’ histori-
cal data. It may be capable of excluding a wealth of
domain-specific context information. Specifically, the
medical professionals who are frequently respond to the
same kinds of questions probably share highly overlap-
ping expertise, and thus the questions they answered can
be regarded as semantically similar to a certain extent.
Extensive evaluations on the real-world dataset demon-
strate that our proposed scheme can achieve significant
gains in medical terminology assignment. Meanwhile, the
whole process of our proposed approach is unsupervised
and it holds potential to handle large-scale data.

The main contributions of this work are threefold:

� To the best of our knowledge, this is the first work on
automatically coding the community generated
health data, which is more complex, inconsistent
and ambiguous compared to the hospital generated
health data.

� It proposes the concept entropy impurity (CEI)
approach to comparatively detect and normalize the
medical concepts locally, which naturally construct a
corpus-aware terminology vocabulary with the help
of external knowledge.

Fig. 1. The schematic illustration of the proposed automatic medical terminology assignment scheme. The answer part is not displayed due to the
space limitation.
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� It builds a novel global learning model to collabora-
tively enhance the local coding results. This model
seamlessly integrates various heterogeneous infor-
mation cues.

The remainders are structured as follows. Section 2 briefly

reviews the related work. The local mining and global learning

approaches are respectively introduced in Sections 3 and 4.
Section 5 details the experimental results and analysis, fol-

lowed by our concluding remarks in Section 7.

2 RELATED WORK

Most of the current health providers organize and code
the medical records manually [3]. This workflow is
extremely expensive because only well-trained experts
are properly competent for the task. Therefore, there is a
growing interest to develop automated approaches for
medical terminology assignment. The existing techniques
can be categorized into two categories: rule-based and
machine learning approaches.

Rule-based approaches play a principle role in medical
terminology assignments [6], [7], [8]. They generally dis-
cover and construct effective rules by making strong uses
of the morphological, syntactic, semantic and pragmatic
aspects of natural language. It has been found that these
methods have significant positive effects on the real sys-
tems [12]. Back in 1995, Hersh and David [13] designed
and developed a system, named SAPPHIRE, which auto-
matically assigned UMLS5 terminologies to medical docu-
ments using a simple lexical approach. Around one
decade later, a system named IndexFinder [14], proposed
a new algorithm for generating all valid UMLS terminolo-
gies by permuting the set of words in the input text and
then filtering out the irrelevant concepts via syntactic and
semantic filtering. Most recently, several efforts [12], [15],
[16], [17] have attempted to automatically convert free
medical texts into medical terminologies/ontologies by
combining several natural language processing methods,
such as stemming, morphological analysis, lexicon aug-
mentation, term composition and negation detection.
However, these methods are purely applicable to well-
constructed discourses. A proposal in [4], instead of just
converting the corpus data to terminologies, suggested
users with appropriate medical terminologies for their
personal queries. It integrated UMLS, WordNet as well as
Noun Phraser to capture the semantic meaning of the
queries. However, an implicit assumption of this work is
that the sources to be searched must be well presented
using a standardized medical vocabulary. Obviously, this
is not applicable to the community generated medical
sources. In summary, even though rule-based methods
are fast and suitable for real-time applications, the rule
construction is challenging and the performance varies
from different corpus.

Machine learning approaches build inference models
from medical data with known annotations and then apply
the trained models to unseen data for terminology predic-
tion [6], [18]. The research can be traced back to the 1990 s,
where Larkey and Croft [10] have trained three statistical

classifiers and combined their results to obtain a better clas-
sification in 1995. In the same year, support vector machine
(SVM) and Bayesian ridge regression were first evaluated
on large-scale dataset and obtained promising performance
[9]. Following that, a hierarchical model was studied in [19],
which exploited the structure of ICD-9 code set and demon-
strated that their approach outperformed the algorithms
based on the classic vector space model. About ten years
later, Suominen et al. [11] introduced a cascade of two clas-
sifiers to assign diagnostic terminologies to radiology
reports. In their model, when the first classifier made a
known error, the output of the second classifier was used
instead to give the final prediction. Yan et al. [20] proposed
a multi-label large-margin formulation that explicitly incor-
porated the inter-terminology structure and prior domain
knowledge simultaneously. This approach is feasible for
small terminology set but is questionable in real-life settings
where thousands of terminologies need to be considered.

Similar to our scheme, Pakhomov et al. [21] attempted to
improve the coding performance by combing the advan-
tages of rule-based and machine learning approaches. It
described Autocoder, an automatic encoding system imple-
mented at Mayo clinic. Autocoder combines example-
based rules and a machine learning module using Na€ıve
Bayes. However, this integration is loosely coupled and
the learning model can not incorporate heterogeneous
cues, which is not a good choice for the community-based
health services.

Beyond medical domain, several prior efforts of corpus
alignment and gap bridging have been dedicated to other
verticals. Chen et al. [22] derived an integrated model that
jointly aligns bilingual named entities between Chinese and
English news. The work in [23] bridged the management
research-practice gap by describing their experiences with
the network for business sustainability. A game platform
was designed in [24] and was demonstrated how to enhance
the inter-generation cultural communication in a family.
These diverse efforts are all heuristic. Their rules and pat-
terns are domain specific and cannot be generalized to other
areas. Another example, the music semantic gap between
textual query and audio contentwas remedied by annotation
with concepts [25]. This approach can hardly be applied to
medical terminology assignment directly due to the differen-
ces in modalities and content structures. Besides, it targets at
labeling music entities with common noun and adjective
phrases, while our approach focuses on terminologies only.

3 LOCAL MINING

Medical concepts are defined as medical domain-specific
noun phrases, and medical terminologies are referred to
as authenticated phrases by well-known organizations
that are used to accurately describe the human body and
associated components, conditions and processes in a sci-
ence-based manner. This section details the local mining
approach. To accomplish this task, we establish a tri-stage
framework. Specifically, given a medical record, we first
extract the embedded noun phrases. We then identify the
medical concepts from these noun phrases by measuring
their specificity. Finally, we normalize the detected medi-
cal concepts to terminologies.5. http://www.nlm.nih.gov/research/umls/.
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3.1 Noun Phrase Extraction

To extract all the noun phrases, we initially assign part-of-
speech tags to each word in the given medical record by
Stanford POS tagger.6 We then pull out sequences that
match a fixed pattern as noun phrases. This pattern is for-
mulated as follows:

ðAdjectivejNounÞ�ðNoun PrepositionÞ
?ðAdjectivejNounÞ�Noun:

(1)

The above regular expression can be intuitively interpreted
as follows. The noun phrases should contain zero or more
adjectives or nouns, followed by an optional group of a
noun and a preposition, followed again by zero or more
adjectives or nouns, followed by a single noun. A sequence
of tags matching this pattern ensures that the corresponding
words make up a noun phrase. For example, the following
complex sequence can be extracted as a noun phrase:
“ineffective treatment of terminal lung cancer”. In addition
to simply pulling out the phrases, we also do some simple
post processing to link the variants together, such as singu-
larizing plural variants.

3.2 Medical Concept Detection

This stage aims to differentiate the medical concepts from
other general noun phrases. Inspired by the efforts in [26],
we assume that concepts that are relevant to medical
domain occur frequently in medical domain and rarely in
non-medical ones. Based on this assumption, we employ
the concept entropy impurity [26] to comparatively measure
the domain-relevance of a concept. For a concept c, its CEI is
computed as follows:

CEIðcÞ ¼ �
X2
i¼1

P ðDijcÞlogP ðDijcÞ; (2)

where D1 and D2 respectively represents our medical cor-
pus and a general-domain corpus; and P ðDijcÞ denotes the
probability that a concept c is related to a specified domain
Di; P ðDijcÞ can be computed as

P ðDijcÞ ¼
countðc;DiÞ
countðcÞ : (3)

To remove the effect of different corpus’s length, we define
the normalized PnðDijcÞ as follows:

PnðDijcÞ ¼
P ðDijcÞ=LiP2
j¼1 P ðDjjcÞ=Lj

; (4)

where Li is the sum of document lengths in Di. Obvi-
ously, CEIðcÞ reaches the maximum value of 0:693,
when concept c equally distributes within these two cor-
pus. This implies that the larger CEI of a concept is, the
more domain-irrelevant is it. To make it easily com-
puter-processable, we define specificity of a concept to
the medical domain as follows:

specificityðcÞ ¼ 1� aCEIðcÞ; if PnðD1jcÞ > PnðD2jcÞ;
aCEIðcÞ; otherwise;

�
(5)

where a ¼ 0:5
0:693. Meanwhile, a threshold is set to detect the

medical concepts.

3.3 Medical Concept Normalization

Although medical concepts are defined as medical domain-
specific noun phrases, we cannot ensure that they are stan-
dardized terminologies. Take “birth control” as an example,
it is recognized as a medical concept by our approach, but it
is not an authenticated terminology. Instead, we should
map it into “contraception”. Therefore, it is essential to nor-
malize the detected medical concepts according to the exter-
nal suitable standardized dictionary and this normalization
is the key to bridging the vocabulary gap.

Currently, there exist numerous authenticated vocabu-
laries, including ICD,7 UMLS, and SNOMED CT.8 These
medical and clinical terminologies were created in different
times by different associations for different purposes. Take
ICD as an example: it is typically used for external reporting
requirements or other uses where data aggregation is
advantageous. In this work, we use SNOMED CT because it
provides the core general terminologies for the electronic
health record and formal logic-based hierarchical structure.

The terminologies and their descriptions in SNOMED CT
are first indexed.9 We then search each medical concept
against the indexed SNOMED CT. For the medical concepts
with multiple matched results, e.g., two results returned for
“female”, we keep all the returned terminology candidates
(i.e., fully specified concept) for further selection. Enlight-
ened by Google distance [27] that is concepts with the same
or similar meanings in a natural language sense tend to be
“close” in units of Google distance, while concepts with dis-
similar meanings tend to be farther apart, we estimate the
semantic similarity between the medical concept and the
returned terminology candidates via exploring their co-
occurrence on Google:

dðti; cÞ ¼
maxðlog rðtiÞ; log rðcÞÞ � log rðti; cÞ

log G�minðlog rðtiÞ; log rðcÞÞ ; (6)

where G is the total number of documents retrieved from
Google; ti and c respectively represents the terminology
candidate and the medical concept; rðxÞ is the number of
hits for search concepts x; and rðti; cÞ is the number of web
documents in which both ti and c co-occur. Then their
semantic relevance is defined as:

Sðti; cÞ ¼ exp �dðti; cÞð Þ: (7)

We then select the most relevant terminology candidate as
the normalized result.

6. http://nlp.stanford.edu/software/tagger.shtml.

7. http://www.who.int/classifications/icd/en/.
8. http://www.ihtsdo.org/snomed-ct/.
9. http://viw2.vetmed.vt.edu/sct/menu.cfm.
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3.4 Discussions

Each medical record is coded with multiple terminolo-
gies with local mining, which are generated via mapping
their embedded medical concepts to terminologies.
However, these mined terminologies may suffer from
various problems.

The first problem is incompleteness. This is because
some key medical concepts not explicitly present in the
medical records are excluded. The medical record illus-
trated in Fig. 1 shows such an example, where the accu-
rate terminology: “use contraceptive sheath” is absent
from the medical record.

The second one is the lower precision. This is due to
some irrelevant medical concepts explicitly embed in the
medical records, and are mistakenly detected and normal-
ized by the local approach. Take the second medical record
in Table 6 as an example, where “finding of life event” nor-
malized from irrelevant medical concept “life” is assigned
as code, even though it is less informative to capture the
main intent.

Another issue, which deserves further discussion here,
is the terminology space. Most previous efforts, includ-
ing our local approach, attempted to map the medical
records directly to the entries in external dictionaries
without any pruning. There is a problem to do so since
the external dictionaries usually cover relatively compre-
hensive terminologies and are far beyond the vocabulary
scope of the given corpus. It may result in the deteriora-
tion in coding performance in terms of efficiency and
effectiveness. The problem is caused by the over-wid-
ened scope of vocabularies, which may bring in unpre-
dictable noises and make the precise terminology
selection challenging.

4 GRAPH-BASED GLOBAL LEARNING

Let Q ¼ fq1; q2; . . . ; qNg and T ¼ ft1; t2; . . . ; tMg respectively
denotes a repository of medical records and their associ-
ated locally mined terminologies. The target of this section
is to learn appropriate terminologies from the global termi-
nology space T to annotate each medical record q in Q.
Among existing machine learning methods, graph-based
learning achieves promising performance [28], [29]. In this
work, we also explore the graph-based learning model to
accomplish our terminology selection task, and expect this
model is able to simultaneously considers various hetero-
geneous cues, including the medical record content analy-
sis, terminology-sharing networks, the inter-expert as well
as inter-terminology relationships. We will first introduce
relationship identification and then we detail how to use
our proposed model to link the underlying connected med-
ical records. Next, we present the optimal solution for our
learning model followed by the label bias estimation.
Finally, we discuss the scalability of our method.

4.1 Relationship Identification

The inter-terminology and inter-expert relationships are
not intuitively seen or implied from medical records.
We thus call them as implicit relationships. This subsec-
tion aims to introduce how to discover these kinds of
relationships.

4.1.1 Inter-Terminology Relationship

The medical terminologies in SNOMED CT are organized
into acyclic taxonomic (is-a) hierarchies. For example, “viral
pneumonia” is-a “infectious pneumonia” is-a “pneumonia”
is-a “lung disease”. Terminologies may also have multiple
parents. For example, “infectious pneumonia” is also a child
of “infectious disease”. Fig. 2 shows part of the SNOMED
CT hierarchy for the class of “screening for disorder”. The
well-defined ontology is able to semantically capture the
inter-terminology hierarchical relationships. Given two ter-
minologies ti and tj, their hierarchical relationship is quanti-
tatively estimated as:

Rij ¼
1
2p ; if ancestor-child relationships;
0; otherwise;

�
(8)

where p is the length of ancestor-child path between code ti
and tj. And R is a matrix representing the weighted inter-
terminology relationships.

The medical terminology hierarchy will enhance our
scheme in two ways. First, it tackles the granularity mis-
match problem, where the terminologies found in the medi-
cal records are very detailed and specific, while those in the
query may be more general and high-level. This is achieved
by rewarding the ancestral nodes with appropriate weights.
Second, the hierarchical relationships boost the coding accu-
racy via filtering out the sibling terminologies. According to
our observation, the sibling terminologies are rarely anno-
tated for the same medical records, because they usually
depict different body parts or emphasizes. For example, as
shown in Fig. 2, the sibling nodes refer to non-overlapping
disorders.

4.1.2 Inter-Expert Relationship

In this paper, the inter-expert relationships will be
viewed stronger if the experts are professionals in the
same or related specific medical areas. This is reflected
by their historical data, i.e., the number of questions they
have co-answered. Inspired by the Jaccard coefficient
[30], the relationship between two experts ui and uj is
calculated as

Jðui; ujÞ ¼
jUi \ Ujj
jUi [ Ujj

; (9)

where U i is the set of medical records that expert ui have
involved. The Jaccard coefficient is known to be useful to
measure the similarity between two objects, which are rep-
resented by two unordered sets.

Fig. 2. Partial illustration of SNOMED CT hierarchy for the terminology
“screening for disorder”.
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4.2 Probabilistic Hypergraph Construction

The graph-based learning models can be broadly catego-
rized into simple graph-based and hypergraph-based
approaches. They are both built on a graph where vertices
are samples. While the simple graph only convey the pair-
wise relationship of vertices and overlooks the relations in
higher orders, which are sensitive to the radius parameter
used in similarity calculation [31]. As compared to simple
graph, hypergraph contains the summarized local grouping
information by allowing each hyperedge to connect more
than two vertices simultaneously. Meanwhile hyperedge
types and weights can be empirically set according to
certain rules, and they can be heterogeneous to fuse com-
prehensive and diversified sources. Taken together, hyper-
graph-based learning partially fits our task of terminology
selection via integrating multi-faceted information cues,
except considering the inter-terminology hierarchical rela-
tionship. We extend this model to be applicable of our
application.

A hypergraph GðV; E;WÞ is composed of the vertex set
V, the hyperedge set E, and the diagonal matrix of hyper-
edge weight W. Here, E is a family of arbitrary subsets e of
V such that [e2E ¼ V, and each hyperedge e is assigned
weight WðeÞ. A probabilistic hypergraph G can be repre-
sented by a jVj � jEj incidence matrix H with the following
entries,

hðvi; ejÞ ¼
P ðvi; ejÞ; if vi 2 ej;
0; otherwise;

�
(10)

where P ðvi; ejÞ describes the probability that vertex vi falls
into the hyperedge ej. Based on H, the vertex degree of
vi 2 V is estimated as,

dðviÞ ¼
X
ej2E

W ðejÞhðvi; ejÞ: (11)

For a hyperedge ej 2 E, its degree is defined as

dðejÞ ¼
X
vi2ej

hðvi; ejÞ: (12)

We denote the vertex degrees and hyperedge degrees by Dv

andDe, respectively.
In our work, the N medical records from Q are regarded

as vertices and they are connected by three types of hyper-
edges. The first type takes each vertex as a centroid and
forms a hyperedge by circling around its k-nearest neigh-
bors based on medical record content similarities. This pro-
cedure was firstly adopted in [28]. The second type is based
on terminology-sharing network. For each terminology, it
groups all the medical records sharing the same terminol-
ogy together. These two kinds of hyperedges highlight dif-
ferent semantic granularity. Suppose that the hypergraph
vertices contain these two medical records: “What are the
signs of pregnancy in first weeks?” and “Is it safe to color my
hair during pregnancy?”. The terminology sharing network
will link these two medical records together, because they
both contain the medical concept “pregnancy”, while the
hyperedges that are based on semantic similarities among
medical records may not group these two vertices together,
since they belong to different health topics. Generally

speaking, terminology sharing network is capable of captur-
ing semantic relationships in sub-topic level via discrete
binary method, and the content-based one is able to grasp
the semantic relationship in high-level topic level via contin-
uous quantization. They complement each other, instead of
generating redundant information. The third kind actually
takes the users’ social behaviours into consideration by
rounding up all the questions answered by closely associ-
ated experts. As a consequence, up to N þM þ U
hyperedges are constructed in our hypergraph, where U is
the number of involved experts. For each hyperedge, the
likelihood of each constituent medical record belonging
to its local group is defined according to its hyperedge type
as follows:

P ðvi; ejÞ ¼
1 Inter-expert Relationships;
Kðqi;qjÞ Content Similarity;
1 Terminology-Sharing;

8<
: (13)

where Kð�; �Þ is the Gaussian similarity function [32], which
is a measure of similarity between two feature vectors, with
considering the whole data distribution, mathematically
stated as,

Kðqi;qjÞ ¼ exp �
jjqi � qjjj2

s2

 !
; (14)

where qi is the feature vector for the ith medical record. The
radius parameter s is simply set as the median of the euclid-
ean distances among all medical records. Then the initial
weight for each hyperedge is,

WðejÞ ¼
X
vi2ej

hðvi; ejÞ: (15)

The magnitude of the hyperedge weight indicates to
what extent the vertices in a hyperedge belong to the
same group [26].

Conventional hypergraph model has been widely
used to solve many problems, such as community detec-
tion [33] and classification [34]. Take binary classification
as an example, which is typically modulated as a regu-
larization framework,

arg min
f

F ðfÞ ¼ argmin
f

VðfÞ þ �LðfÞf g; (16)

where vector f contains the relevance probabilities that we
wish to learn. VðfÞ and LðfÞ denote the regularizer on the
hypergraph and empirical loss, respectively. The parameter
� is a regularization parameter to balance the empirical loss
and the regularizer.

In this work, the medical terminology assignment task is
regarded as a multi-label transductive learning problem.
Inspired by Eq. (16), it is formulated as,

arg min
F

FðFÞ ¼ arg min
F

XM
i¼1

Vðf iÞ þ �Lðf iÞf g; (17)

where M refers to the number of classes, i.e., the number of
medical terminologies. Vector f i is the ith column of F, rep-
resenting the relevance scores of each medical record to the
ith code.
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To explicitly incorporate the well-structured inter-
terminology relationships, one more regularizer term need
to be incorporated into Eq. (17):

arg min
F

XM
i¼1

Vðf iÞ þ �Lðf iÞ þ m
XM
j¼1

Rijkf i � f jk2
( )

; (18)

where Rij is the inter-class relationship between class i and
class j that is defined in Section 4:1:1. m is a regularization
constant to regulate the effect of the third term. Obviously,
the ith row of F represents the relevance scores of all the ter-
minologies to the medical record i. These relevance scores
are reranked in descending order and the top c terminolo-
geis are selected as the recommended results.

4.3 Global Learning Optimization

In Section 4:2, we have defined the hypergraph-based
framework for the global terminology learning that contains
three objectives. Here we aim to formulate each objective in
details and derive a solution to this optimization problem.
The philosophies to formulate these three objectives are as
follows. The first objective should guarantee that the rele-
vance probability function is continuous and smooth in
semantic space. This means that the relevance probabilities
of semantically similar medical records should be close to
each other. The second objective is ensured by the empirical
loss function, which forces the relevance probabilities to
approach the initial roughly estimated relevance scores.
These two implicit constraints are widely adopted in
reranking-oriented approaches [35], [36]. The third objective
encourages the values of medical records, which are con-
nected by hierarchical structured terminologies, should be
similar to each other.

Inspired by the normalized cost function of a simple
graph [37], [38], VðfÞ is defined as

1

2

X
e2E

X
u;v2e

wðeÞhðu; eÞhðv; eÞ
dðeÞ

fðuÞffiffiffiffiffiffiffiffiffi
dðuÞ

p � fðvÞffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

: (19)

By defining Q ¼ D
�1
2

v HWD�1
e HTD

�1
2

v , we can further
derive that

VðfÞ ¼ fT ðI�QÞf ; (20)

where I is an identity matrix. Let D ¼ I�Q, which is a posi-
tive semi-definite matrix, the so-called hypergraph Lapla-
cian [34], VðfÞ can be rewritten as,

Vðf iÞ ¼ fTi ~f i: (21)

For the loss term, we introduce a new vector y, which con-
tains all the initially estimated relevance probabilities and
define the loss term as a least square function as follows:

Lðf iÞ ¼ kf i � yik2 ¼
X
v2V

fiðvÞ � yiðvÞð Þ2; (22)

where yiðvÞ varies between ½0; 1� and is the initially esti-
mated probability of sample v labeled with code i. Feeding
Eqs. (21) and (22) into Eq. (18), we obtain FðFÞ as,

XM
i¼1

fTi ~f i þ �kf i � yik2 þ m
XM
j¼1

Rijkf i � f jk2
( )

: (23)

By minimizing FðFÞ, it is able to satisfy our initial philos-
ophies. We can solve F by intuitively and equivalently solv-
ing the following problem:

arg min
F

FT~Fþ �ðFTF� 2FTYÞ þ mFGFT
� �

; (24)

where G is the graph Laplacian of R, G ¼ V�R,

V ¼ diagðVjjÞ, Vjj ¼
PM

i Rij. By differentiating the above
equation with respect to F, we have

F ¼ �

1þ �
Iþ mG

1þ �
� Q

1þ �

� ��1

Y: (25)

4.4 Pseudo Label Estimation

As introduced in Section 4:3, our philosophy of the
empirical loss term is to ensure the learnt relevance proba-
bilities between terminologies and medical records are not
far away from the initial roughly estimated relevance
scores. In this section, we detail how to estimate the initial
relevance scores.

YN�M is a label biases matrix, where N and M respec-
tively denotes the number of medical records and the num-
ber of terminologies. Yij stands for the initially estimated
relevance between medical records i and terminology j. If
terminology j is explicitly associated to medical record i
identified by our local method, Yij is assigned to be 1. Other-
wise, the well-known kernel density estimation approach
[39], [40] is employed to estimate the relevance:

Yij ¼
1

jxjj
X
qc2xj

Kðqi;qcÞ; (26)

where xj denotes a set of medical records containing the ter-
minology tj. Kð:; :Þ is the Gaussian similarity function
defined in Eq. (14). The above equation can be interpreted
as follows: tj and each of its associated medical record qc in
xj can respectively be viewed as a family and family mem-

bers. Then the closeness of an unknown medical record to
this family is estimated by averaging the soft voting from
all family members.

4.5 Complexity Analysis

For the proposed graph-based global learning, the computa-
tional cost magnitude is analyzed as:

O E3 þ 2NE2 þ 2EN2 þN3 þ dN2
� 	

; (27)

where d denotes the dimension of extracted features. N and
E respectively represents the number of involved medical
records and hyperedges. The hypergraph built on a medical
records collection could be very large, and thus it is would
be inefficient if we directly conduct the learning on such a
hypergraph.
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By partitioning the graph, the inference will be per-
formed on a smaller scale, improving the efficiency to a
great extent [41]. On the other hand, partitioning the entire
hypergraph into multiple closely connected medical records
capsules and learning the medical terminologies within
each capsule will reduce the noise brought in by other irrel-
evant subgraphs.

Another approach to reduce the size of the hypergraph
is by pre-clustering the medical records during the data
collection stage into several sub-groups, and the hyper-
graph-based learning is only conducted within each clus-
ter. Each cluster contains the semantically close medical
records, which are inter-connected and most probably
share the same terminologies. We adopt the pre-cluster-
ing technique in this study. With this preprocessing, the
process can be completed within 1 second by a quad-core
pentium processor of frequency: 3:4 GHz with 8 G mem-
ory. In this way, we are capable of providing instant rec-
ommendations of terminologies. And it can be employed
to handle a much larger dataset.

4.6 Discussions

As detailed in Section 3:4, local mining approach suffers
from three limitations: information loss, lower precision
and over-widened terminology space problems. This sub-
section aims to discuss how global learning approach
breaks these barriers.

The information loss is caused by some missing key con-
cepts of the given medical record. They, however, are prob-
ably present in the semantically similar neighbours.
Supposing tj denotes the terminology corresponding to the
missing key concept cj in the given medical record qi.
According to our pseudo label estimation in Eq. (26), the rel-
evance score between qi and tj will be initialized very high,
because most of samples in xj are comparatively similar to

qi. The empirical loss function term in our model forces the
learning relevance probabilities Fij to approach Yij. In addi-
tion, the first regularizer term in our model also ensures
that the relevance score between tj and qi should be close to
the scores between tj and the neighbours of qi. Conse-
quently, the global learning is able to discover the missing
key concepts from underlying connected medical data and
strongly link them to the given medical record.

The presence of irrelevant concepts results in the lower
precision. Typically, these irrelevant medical concepts have
grammatical meaning for communication between humans
to help understand their intent, but they have less medical
highlights and sparsely distribute in semantically similar
data space. Even though Yij is initialized to be 1 and the
empirical loss function attempts to make Fij approaching 1,
the first regularizer term will bring the relevance score
down. Therefore, global learning is able to keep off these
irrelevant concepts.

In this work, we address the over-widened space prob-
lem by merging all the locally assigned terminologies in our
data collection to naturally form a corpus-aware terminol-
ogy space, and utilize the proposed global learning
approach to learn and propagate medical terminologies
within this scope.

5 EXPERIMENTS

In this section, we introduce the empirical evaluation of the
proposed scheme. We first discuss the experimental set-
tings, including the dataset and ground truth labeling. We
then individually validate each component of our scheme.
Finally, we comparatively evaluate the whole scheme.

5.1 Experimental Settings

We crawled more than 109 thousand medical records from
HealthTap. Each medical record contains question, answers,
and all the involved experts who answered the question
before. Table 1 shows the statistics of our data collection.
We can see that more than six thousand questions, though
they may be lexically different, share the same answers.
This shows that the vocabulary gap among users is very
large. Figs. 3 and 4 show the analytic of our data collection,
where around 54 percent of experts have replied to at least
four questions and more than 33:2 percent of questions
have at least two answers. These intersected structure is the
basis of learning codes from neighbors.

TABLE 1
Statistics of Our Data Collection

Unique
Question #

Answer # Duplicate
Answer #

Unique
Expert #

109;843 160;736 6;444 5;958

Fig. 4. The distribution of questions with respect to their received
answers.

Fig. 3. The distribution of experts with respect to the number of questions
they answered.
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The questions with only one answer or multiple answers
but all from the same expert were eliminated, because they
are isolated and unable to contribute much to the relation-
ship investigation. Meanwhile, the experts who replied less
than four questions, along with the associated questions,
were also removed. These eliminations left us 36;473 ques-
tions. We have verified that removing non-active doctors
does not result in severe loss of information. When we took
a closer look at the dataset, we found that it is reasonable:
the non-active doctors generally do not concern their online
reputation and seem not carefully to answer the questions
within their own expertise. Therefore, the non-active doc-
tors bring in noises. On the other hand, if we consider these
non-active doctors, the number of inter-expert based hyper-
edges will doubles in size, which decreases the efficiency.
That is why we determined to remove them.

Unlike normal documents, these question samples are
typically short, consisting of only one or two sentences. They
thus do not provide sufficient word co-occurrences or shared
contexts for effective similarity measure. It limits the accu-
racy obtained by the general learning methods. In our work,
we incorporate the answers to supplement the short ques-
tions, whichwell compensate for the data sparseness issue.

For ground truth construction, we invited three pro-
fessionals with master degrees majored in medicine pro-
gramme. The labelers were trained with a short tutorial
and a set of demonstrating examples. Although the
ground truth labeling is subjective, a majority voting can
alleviate the problem.

5.2 Local Mining Analysis

After data preprocessing, our pattern-based method
extracted 13;845 unique noun phrases in total. The preci-
sion is ensured to be 100 percent since we defined the
pattern according to the noun-phrase regular expression
shown in Eq. (1).

As mentioned in Section 3:2, for each noun phrase, its
specificity was estimated by comparing the term frequen-
cies between two different corpora D1 and D2. D1 is our
medical-domain corpus and D2 is a general English Giga-
word data of Linguistic Data Consortium.10 We detected
8;910 distinct medical concepts in total. Their frequency

distribution is illustrated in Fig. 5, which roughly obeys the
power law distribution. The medical concepts with occur-
rencing frequencies greater than five were selected to repre-
sent the content of each medical record. That is to say, each
medical record will be represented by a 4;877-dimensional
bag of medical concept histograms. However, it is unrea-
sonable if we treat each dimension equally since we
observed that the medical concepts with higher frequencies
are usually more generic and less informative, such as the
“women’s health” and “pain”. While medical concepts with
rare occurrences are very specific and descriptive, such as
“rotavirus infection” and “muscle paralysis”. To this end,
we adaptively weighted each medical concept in terms of

its frequency, rðcÞ ¼ 1
logðoðcÞþ 1Þ, where oðcÞ refers to the occur-

rence frequency of medical concept c. This formula stamps
the generic medical concepts and rewards the specific medi-
cal concepts. Finally, each feature vector was normalized to
have zero-mean and one-variance.

To select the optimal threshold for specificity and validate
the performance of medical concept detection, we randomly
selected 400 noun phrases from the extracted noun phrase
space, and equally split them into two subsets, one as thresh-
old learning and the other as testing. Among these two sets
of noun phrases, 116 and 121 were respectively voted as the
medical concepts by our three annotators. Fig. 6 demon-
strates the procedure of the specificity threshold selection.
The peak value is reached when threshold arrives at 0:7.
Table 2 illustrates the confusion matrix obtained by our
proposed medical concept detection. We can see that our
approach achieves fairly good performance, i.e., 91:5 per-
cent. The misclassified results mainly come from two parts.
First, some concepts, such as “mosquito allergy” and
“kidney stone removal” sparsely distribute in our medical
dataset and they can not be detected as medical concepts
even they are. This is because their domain-relevances are

Fig. 6. Illustration of threshold selection for specificity.
Fig. 5. The medical concept frequency distribution with respect to the
number of distinct medical concepts.

TABLE 2
The Confusion Matrix of Medical Concept Detection Results

Prediction Class Medical
Concepts

Non-medical
Concepts

Medical Concepts 110 6
Non-medical Concepts 11 73

The prediction accuracy is 91:5 percent.10. http://www.ldc.upenn.edu/.
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estimated very low by our comparative measure. On the
other hand, some non medical concepts, such as “excise”
and “walkers”, have been frequently mentioned by experts,
whichmake them classified asmedical concepts.

During medical concept normalization, some interesting
phenomenons were observed:

1) Not all the detected medical concepts can be
mapped to one entry in SNOMED CT. For exam-
ple, some experts misspelt “menses” as “mense”,
while “mense” is not searchable.

2) Multiple medical concepts may be converted into the
same terminology. For example, both “chloasma
gravidarum” and “pregnancy mask” refer to
“melasma gravidarum”. This further verifies that the
vocabulary varies widely among content generators.

3) Less than 15 percent of medical concepts are the
same with their normalized terminologies. This
implies that the usage of authenticated terminologies
is very sparse in social writings and it is highly
desired to normalize them.

Our approach is able to pair each medical concept and its

corresponding terminology. We then randomly selected 100
medical concept-terminology pairs to validate our method.

Three annotators then voted each pair as “correct” or

“incorrect”. Our proposed normalization approach achieved

up to 82 percent accuracy. The coarse-fine granularity is a

leading cause of errors. Take “menstrual cycle” for an exam-

ple. Our approach was unable to find the same granularity of

terminology related to this medical concept. Instead, numer-

ous specific-level terminologies, such as “long menstrual

cycle”, “short menstrual cycle”, and “abnormal menstrual

cycle” were derived. These specific-level terminologies, how-

ever, sometimes were viewed as incorrect by annotators to rep-

resent the original medical concepts. Table 3 displays ten

representative medical concept-terminology pairs.

5.3 Graph-Based Global Learning Analysis

To demonstrate the effectiveness of our global learning
approach, we compare it against the following state-of-art
learning approaches:

� PRFeedback. Pseudo-Relevance Feedback [42]. For
each terminology, a SVM classifier was trained to esti-
mate the relevance score between this terminology
and each medical record. The training data was

generated based on the assumption that the top-
ranked samples are more relevant than the lower-
ranked results in general. The initial medical record
ranking list with respect to this terminology was gen-
erated based on Eq. (26). Thismethod requires to train
M classifiers. (Baseline 1)

� RWReranking. Random Walk based Reranking [29].
For each given medical record q, a simple graph was
first constructed. The stationary probability output
the relevance scores between q and any other medi-
cal records involved in the graph. The terminologies
associated with the top 50 medical records were
selected as candidates, and their relevance score to q

was estimated as, P ðq; tÞ ¼
P

qt2Qt
pðqt;qÞ

jQtj , where Qt

denotes the medical record set containing terminol-
ogy t in the top 50medical records.(Baseline 2)

� CHLearning. Conventional hypergraph learning
[28]. The inter-terminology hierarchical relation-
ships were not considered at all. Specifically, the
results were inferred from Eq. (17) instead of
Eq. (18). (Baseline 3)

� GGLearning. Our global learning approach.
To fairly evaluate our unsupervised learning approach, other

supervised graph-based learning methods were not listed here.

For each method mentioned above, the involved parameters

were carefully tuned, and the parameters with the best per-

formances were used to report the final comparison results.

For example, the two parameters � and m were obtained with

grid search in flexible step size to achieve optimal coding per-

formance in terms of NDCG@5, which respectively are 9 and

1. Meanwhile, these four methods were all based on local min-

ing results, i.e., each medical record has been locally coded.

The ground truth was created by a manual labelling pro-
cedure. To be specific, we randomly selected 100 medical
records and for each one we generated four different rank-
ing lists of terminologies by the above methods. Three anno-
tators were asked to label the top 20 terminologies to be
very relevant (score 2), relevant (score 1) or irrelevant (score
0), with respect to the given medical record. We performed
a voting to establish the final relevance level of each
terminology.

The inter-rater reliability of the labeling task was ana-
lyzed with the Kappa method [43]. The Kappa metric is a
chance corrected statistic to quantitatively measure the
degree of inter-rater agreement. It can be interpreted as
expressing the extent to which the observed amount of
agreement among raters exceeds what would be expected if
all raters made their ratings completely randomly. Kappa
result ranges from 0 to 1. Kappa value more than 0:7 typi-
cally indicates that agreement is strong. The results demon-
strated there were sufficient inter-rater agreements. In our
work, there are 2;000 cases, three categories, and three
raters. The fixed-marginal kappa and free-marginal kappa
values are respectively 0:761 and 0:8.

NDCG@n [39] was adopted as our metric to measure the
performance of various learning approaches. The compari-
son results are illustrated in Fig. 7. It is observed that
CHLearning andGGLearning are consistently and remark-
ably better than the other two baselines across various
evaluating depth of NDCG. One possible reason is the

TABLE 3
The 10 Representative Medical Concepts and Their
Corresponding Terminologies After Normalization

Medical Concepts Normalized Terminologies

Birth control Contraception
Blood loss Hemorrhage
Breast cancer Malignant tumor of breast
Condom Uses contraceptive sheath
Home pregnancy test Pregnancy test finding
Late menses Menstrual period late
Ovarian cyst Cyst of ovary
Period pain Dysmenorrhea
Sex Finding of sexual intercourse
Spontaneous abortion Spontaneous abortion
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unreliable initial ranking list resulted by the rough estima-
tion. The second reason is probably because the hyper-
graph-based learning is able to capture the high-order
relationships among medical records, i.e., the summarized
local grouping information, in contrast to simple pairwise
relationships characterized by other two approaches. In
addition, hypergraph-based learning is able to integrate het-
erogeneous information cues, such as terminology-sharing
network and inter-expert relationships, rather than the pure
lexical property based similarity. From this figure, we can
also observe that our proposed method consistently outper-
forms CHLearning. This is because the inter-terminology
hierarchical relationships mined from external knowledge
are leveraged by our proposed global learning approach to
enhance the coding performance.

5.4 Medical Terminology Assignment

It is well known that for the annotation task, precision is
usually more important than recall. We thus adopted two
metrics that are able to characterize precisions from differ-
ent aspects. The first one is average S@K over all testing
medical records, which measures the probability of finding
a relevant terminology among the top K recommended
ones. To be specific, for each testing medical record, S@K is
assigned to be 1 if a relevant terminology is positioned in
the top K and 0 otherwise. The second one is average P@K
that stands for the proportion of recommended terminolo-

gies that are relevant. P@K is defined as, P@K ¼ jC\Rj
jCj

where C is a set of the top K terminologies, and R is the
manually labeled positive ones. The ground truth construc-
tion is analogous to Section 5:3. The slight differences are
that the invited annotators were required to label only top
five suggested terminologies for each medical record, and
they were labeled either as “positive” or “negative”.

We comparatively evaluate our proposed medical termi-
nology assignment scheme with other competitive coding
approaches:

� TagCollective. Tag Recommendation based on Collec-
tive Knowledge [30]. This approach is a statistical
and data-driven method. To be specific, given a med-
ical record with locally mined terminologies, an
ordered list of m terminology candidates were

derived for each of the locally mined terminologies
based on the their co-occurrences. The lists of candi-
date terminologies were then used as input for termi-
nology aggregation and ranking, which ultimately
produces the ranked list of n recommended termi-
nologies. For the aggregation, we employed the vote-
based strategy as introduced in [30].

� TagAssist. This method was first introduced by [44].
It annotates a medical record by generating the
search queries from the given medical record,
searching a collection of medical records using those
queries, and selecting suitable terminologies from
the retrieved medical records. For the matching, we
employed the method in [42].

� LocalMining. Our local mining approach.
� Local+Global. Our proposed joint local-global scheme

for medical terminology assignment.
The comparison results in terms of S@K and p@K are

respectively displayed in Tables 4 and 5. We can see that
the local mining approach achieves the worst performance,
since irrelevant concepts may be mapped to terminologies
because of their presence in the medical records. It is also
observed that our proposed medical terminology assign-
ment scheme significantly outperforms the others. Our
approach achieves up to 100 percent at S@4, which suggests
that at least one recommended medical terminology can be
ensured to be relevant in the top four terminologies. On the
other hand, p@5 larger than 0:76 means that approximate
four terminologies on average are relevant in the top five
recommended ones. This demonstrates the effectiveness of
our graph-based global learning component. TagCollective
only statistically considers the co-occurrences among termi-
nologies, which completely ignores the lexical property-
based similarities among medical records, let alone other
complex characteristics and higher order analytic. Even
though the TagAssist takes pairwise similarities into con-
sideration, it does not consider the hierarchical relationships
among terminologies or the social connections among
experts. Meanwhile, we can see that the performance of

Fig. 7. Performance comparison of global learning-based medical termi-
nology assignment.

TABLE 4
The Comparative Evaluation Results of Medical Terminology

Assignment in Terms of S@K

Apporaches
Metrics

S@1 S@2 S@3 S@4 S@5

TagCollective 76:0% 87:0% 95:0% 98:0% 99:0%
TagAssist 78:0% 88:0% 96:0% 98:0% 100:0%
LocalMining 72:0% 84:0% 91:0% 95:0% 96:0%
Local+Global 83:0% 92:0% 98:0% 100:0% 100:0%

TABLE 5
The Comparative Evaluation Results of Medical Terminology

Assignment in Terms of P@K

Apporaches
Metrics

P@1 P@2 P@3 P@4 P@5

TagCollective 76:0% 75:5% 74:3% 72:8% 71:0%
TagAssist 78:0% 77:0% 75:6% 74:3% 72:8%
LocalMining 72:0% 72:1% 69:7% 68:3% 66:6%
Local+Global 83:0% 81:5% 80:3% 78:8% 76:4%
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TagAssist is a bit better than TagCollective, which reflects
that the lexical property-based similarities is more reliable
than terminologies co-occurrence cues.

We also performed an ANalysis Of VAriance (ANOVA)
test with single factor only. It was conducted over average
P@K between our scheme and each of the baselines. The F
and p values between Local+Global and LocalMining are
respectively 43:54 and 0:00017. These two values between
Local+Global and TagAssist are 9:26 and 0:016, respec-
tively. And they are respectively 17:40 and 0:0031 between
Local+Global and TagCollective. It can be seen that all p
values are much smaller than 0:05, which indicates that the
improvements are statistically significant.

The following three figures respectively illustrate the
results of statistical analysis. It can be seen that all p values
are much smaller than 0.05, which indicates that the
improvements are statistically significant.

Table 6 comparatively illustrates the representative
medical record samples with locally minded terminolo-
gies and locally+globally recommended ones. From this
table, we can see that the locally mined terminologies
may be irrelevant to the medical records, such as
“feeling safe” to the first example. This is caused by the
appearance of “safe” in the medical record. Also we can
observe that some key terminologies missed by local
mining approach, such as “advanced maternal age grav-
ida” to the second example. This may be resulted in by
the absence of some key medical concepts of the original
medical records. Intuitively, the terminologies are more
comprehensive and reliable after enhancement with
global learning. This is because it is able to learn termi-
nologies from neighbors that complements the missing
information and keeps off the irrelevant information.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a medical terminology assignment
scheme to bridge the vocabulary gap between health
seekers and healthcare knowledge. The scheme comprises
of two components, local mining and global learning. The
former establishes a tri-stage framework to locally code
each medical record. However, the local mining approach
may suffer from information loss and low precision, which
are caused by the absence of key medical concepts and the
presence of the irrelevant medical concepts. This motivates

us to propose a global learning approach to compensate for
the insufficiency of local coding approach. The second com-
ponent collaboratively learns and propagates terminologies
among underlying connected medical records. It enables
the integration of heterogeneous information. Extensive
evaluations on a real-world dataset demonstrate that our
scheme is able to produce promising performance as com-
pared to the prevailing coding methods. More importantly,
the whole process of our approach is unsupervised and
holds potential to handle large-scale data.

In the future, we will investigate how to flexibly organize
the unstructured medical content into user needs-aware
ontology by leveraging the recommended medical
terminologies.
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hair structure, dyed hair, feeling safe,
patient currently pregnant, first trimester
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hair structure, patient currently pregnant, coal
tar allergy, hair color change, disorder of
endocrine system...
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patient currently pregnant, finding of life
event...

finding related to risk factor in pregnancy, birth,
advanced maternal age gravida, diabetes mellitus
during pregnancy patient currently pregnant...
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