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ABSTRACT
Emotions can be evoked in humans by images. Most previous
works on image emotion analysis mainly used the elements-of-art-
based low-level visual features. However, these features are vul-
nerable and not invariant to the different arrangements of elements.
In this paper, we investigate the concept of principles-of-art and
its influence on image emotions. Principles-of-art-based emotion
features (PAEF) are extracted to classify and score image emotions
for understanding the relationship between artistic principles and
emotions. PAEF are the unified combination of representation fea-
tures derived from different principles, including balance, empha-
sis, harmony, variety, gradation, and movement. Experiments on
the International Affective Picture System (IAPS), a set of artistic
photography and a set of peer rated abstract paintings, demonstrate
the superiority of PAEF for affective image classification and re-
gression (with about 5% improvement on classification accuracy
and 0.2 decrease in mean squared error), as compared to the state-
of-the-art approaches. We then utilize PAEF to analyze the emo-
tions of master paintings, with promising results.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analysis and
Indexing; I.4.7 [Image processing and computer vision]: Feature
Measurement; J.5 [Computer Applications]: Arts and Humanities

General Terms
Algorithms, Human Factors, Experimentation, Performance

Keywords
Image Emotion; Affective Image Classification; Image Features;
Art Theory; Principles of Art

1. INTRODUCTION
Humans are able to perceive and understand images only at high

level semantics (including cognitive level and affective level [10]),
rather than at low level visual features. Most previous works on im-
age content analysis focus on understanding the cognitive aspects
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of images, such as object detection and recognition. Little research
effort has been dedicated to the understanding of images at the af-
fective level, due to the subjective evaluation on emotions and the
“affective gap”, which can be defined as “the lack of coincidence
between the measurable signal properties, commonly referred to
as features, and the expected affective state in which the user is
brought by perceiving the signal” ([10], p. 91). However, with the
increasing use of digital photography technology by the public and
users’ high requirement for image understanding, the analysis of
image content at higher semantic levels, in particular the affective
level, is becoming increasingly important.

For affective level analysis, how to extract emotion related fea-
tures is the key problem. Most existing works target low level vi-
sual features based on the elements-of-art, such as color, texture,
shape, line, etc. Obviously, these features are not invariant to their
different arrangements and their link to emotions is weak, while
different element arrangements share different meanings and evoke
different emotions. Therefore, elements must be carefully arranged
and orchestrated into meaningful regions and images to describe
specific semantics and emotions. The rules, tools or guidelines of
arranging and orchestrating the elements-of-art in an artwork are
known as the principles-of-art, which consider various artistic as-
pects including balance, emphasis, harmony, variety, gradation,
movement, rhythm, and proportion [6, 12]. Different combinations
of these principles can evoke different emotions. For example,
symmetric and harmonious images tend to express positive emo-
tions, while images with strong color contrast may evoke negative
emotions [31] (see Section 5.2). Further, the artistic principles are
more interpretable by humans than elements [5].

Inspired by these observations, we propose to study, formulate,
and implement the principles-of-art systematically, based on the
related art theory and computer vision research. After quantizing
each principle, we combine them together to construct image emo-
tion features. Different from previous low level visual features,
PAEF take the arrangements and orchestrations of different ele-
ments into account, and it can be used to classify and score im-
age emotions evoked in humans. The framework of our proposed
method is shown in Figure 1. We then apply the proposed PAEF
to predict the emotions implied in famous artworks to capture the
masters’ emotional status.

The rest of this paper is organized as follows. Section 2 intro-
duces related work on affective content analysis, aesthetics, compo-
sition and photo quality assessment. We summarize the elements-
of-art-based low level emotion features (EAEF) and their limita-
tions in emotion prediction as a preliminary in Section 3. The pro-
posed PAEF are described in Section 4. Experimental evaluation,
analysis and applications are presented in Section 5, followed by
conclusion and future work in Section 6.
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Figure 1: The framework of our proposed method. The main contributions, principles-of-art-based emotion features (PAEF), lie in
the central feature extraction part in blue solid rectangle.

Table 1: Related works on affective content analysis
Category Classification Publications

Data Still images [26, 38, 42, 24, 20, 15, 29, 33]
type Dynamic videos [10, 17, 41, 43, 39, 3, 13]

Emotion Categorical [26, 38, 42, 43, 24, 20, 15, 17, 39, 13]
model Dimensional [10, 24, 29, 41, 3, 33]

Features Generality Generic [42, 29, 4]
Specific [10, 26, 38, 43, 24, 20, 15, 17, 41, 39, 3, 13, 33]

Level Low [10, 26, 38, 42, 24, 20, 15, 29, 17, 41, 39, 3]
Mid [26, 13, 33]
High [26, 4, 43]

Art theory Elements [26, 38, 42, 24, 20, 15, 33]
Principles [26]

2. RELATED WORK
Affective content analysis. Some research efforts have been

made recently to improve the accuracy of affective understanding
in images and videos. Table 1 presents the related works, which can
be divided into different types, according to the analyzed multime-
dia type, the adopted emotion model and the extracted features.

Generally, there are two typical models to represent emotions:
categorical emotion states (CES), and dimensional emotion space
(DES). CES methods [26, 38, 42, 24, 20, 15, 17, 39, 13] con-
sider emotions to be one of a few basic categories, such as fear,
contentment, sadness, etc. DES methods mostly employ the 3-D
valence-arousal-control emotion space [32], 3-D natural-temporal-
energetic connotative space [3], 3-D activity-weight-heat emotion
factors [33], and 2-D valence-arousal emotion space [10, 24, 29,
41] for affective representation and modeling. CES in the classifi-
cation task is easier for users to understand and label, while DES
in the regression task is more flexible and richer in the descriptive
power. Similar to [26, 42], we adopt CES to classify emotions in-
to eight categories defined in a rigorous psychological study [27],
including anger, disgust, fear, sadness as negative emotions, and
amusement, awe, contentment, excitement as positive emotions.
We also use valence-arousal DES to predict the scores of image
emotions as in [24].

From a feature’s view point, most methods extract low level visu-
al and audio features. Lu et al. [24] investigated the computability
of emotion through shape features. Machajdik and Hanbury [26]
exploited theoretical and empirical concepts from psychology and
art theory to extract image features that are specific to the domain
of artworks. In their method, color and texture are used as low
level features, composition are used as mid level features, while

image semantic content including human faces and skin are used
as high level features. Besides color features, Jia et al. [15] al-
so extracted social correlation features for social network images.
Solli and Lenz [33] classified emotions using emotion-histogram
features and bag-of-emotion features derived for patches surround-
ing each interest point. Irie et al. [13] extracted mid level features
based on affective audio-visual words and proposed a latent topic
driving model for video classification task. Borth et al. proposed to
infer emotions based on the understanding of visual concepts [4]. A
large-scale visual sentiment ontology composed of adjective noun
pairs (ANPs) is constructed and SentiBank is proposed to detect
the presence of ANPs. Popular features in previous works on im-
age emotion analysis are mainly based on elements-of-art, such as
color, texture, shape, etc. Machajdik and Hanbury [26] extracted
composition features, some of which can be considered as prin-
ciples. However, there is still no systematic study on the use of
principles-of-art for image emotion analysis.

Aesthetics, composition and photo quality assessment. Aes-
thetics, composition in images and the quality of photos are strong-
ly related to humans’ emotions. Joshi et al. [16] and Datta et al. [7]
discussed key aspects of the problem of computational inference
of aesthetics and emotions from natural images. Liu et al. [21]
evaluated the composition aesthetics of a given image based on
measuring composition guidelines and changed the relative posi-
tion of salient regions using a compound operator of crop-and-
retarget. Aesthetics and interestingness are predicted through high
level describable attributes, including compositional, content and
sky-illumination attributes [8]. Compositional features are also ex-
ploited for scene recognition [30] and category-level image classi-
fication [37]. Based on professional photography techniques, Luo
and Tang [25] extracted the subject region from a photo and formu-
lated a number of high-level semantic features based on this subject
and background division. Sun et al. [35] presented a computational
visual attention model to assess photos by using the rate of focused
attention. In this work, we expand related research on computer vi-
sion and multimedia to measure the artistic principles for affective
image classification and score prediction.

3. ELEMENTS OF ART: A PRELIMINARY
Low level features extracted for emotion recognition are mostly

based on the elements-of-art (EAEF), including color, value, line,
texture, shape, form and space [12], as shown in Figure 2. In this



section, we briefly introduce EAEF and their limitations in image
emotion prediction.

3.1 Elements-of-art-based Low Level Features
Color. An element of art which has three properties: hue, in-

tensity, and value, representing the name, brightness and lightness
or darkness of a color. Color is often used effectively by artists to
induce emotional effects, such as saturation, brightness, hue, and
colorfulness [26, 38, 20, 15].

Value. An element of art that describes the lightness or darkness
of a color. Value is usually found to be an important element in
works of art. This is true with drawings, prints, photographs, most
sculpture, and architecture. The description of lightness or dark-
ness is often used as value features [26, 38].

Line. An element of art which is a continuous mark made on
some surface by a moving point. There are mainly two types of
lines, emphasizing lines and de-emphasizing lines. Emphasizing
lines, better known as contour lines, show and outline the edges or
contours of an object. When artists stress contours or outlines in
their work, the pieces are usually described as lines. Not all artists
emphasize lines in their works. Some even try to hide the outline of
objects in their works. De-emphasizing lines are used to describe
works that do not stress the contours or outlines of objects.

Lines can be used to suggest movement in some direction. They
are also used in certain ways to give people different feelings. For
example, horizontal lines suggest calmness and usually make peo-
ple feel relaxed, vertical lines suggest strength and stability, diag-
onal lines suggest tension, and curved lines suggest flowing move-
ment [26]. Usually, the amounts and lengths of static and dynamic
lines are calculated by Hough transform to describe lines [26].

Texture. An element of art which is used to describe the surface
quality of one object. It refers to how things feel, or look as if
they might feel if you were able to touch it. Some artists paint
carefully to give their paintings a smooth appeal, while others use
a lot of paint to produce a rough texture. The most frequently used
texture features are wavelet-based features, Tamura features, gray-
level co-occurrence matrix [26, 20] and LBP features.

Shape and Form. Shape is flat and has only 2 dimensions, height
and width. The descriptions of roundness, angularity, simplicity,
and complexity are used as shape features [24]. Form is 3 dimen-
sional with height, width and depth, thus having mass and volume.

Space. An element of art which refers to the distance or area
between, around, above, below or within things.

3.2 Limitations of EAEF
These elements-of-art based low level visual features are easy to

extract based on current computer vision and multimedia research.
However, there are several disadvantages using them to model im-
age emotions:

(1) Weak link to emotions [1, 26]. EAEF suffer from the great-
est “affective gap" and are vulnerable and not invariant to the dif-
ferent arrangements of elements, resulting in the poor performance
on image emotion recognition. These low level features cannot rep-
resent high level emotions well.

(2) Not interpretable by humans [1]. As EAEF are extracted
from low level view point. Humans cannot understand the mean-
ings of these features and why such a set of features induce a par-
ticular emotion.

4. PROPOSED EMOTION FEATURES
In this section, we systematically study and formulize 6 artis-

tic principles. For each principle, we first explain the concepts
and meanings, under the art theory in [6, 12], and then translate
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Figure 2: Low-level representation features of emotions based
on elements-of-art.

these concepts into mathematical formulae for quantization mea-
surement. As rhythm and proportion are ambiguously defined, we
do not take them into account here.

4.1 Balance
Balance (symmetry) refers to the feeling of equilibrium or stabil-

ity of an art work. The artists arrange balance to set the dynamics
of a composition. There are three types of balances: symmetrical,
asymmetrical and radial. Symmetrical balance is the most visually
stable, and characterized by an exact or nearly exact compositional
design on both sides of the horizontal, vertical or any axis of the
picture plane. If the two halves of an image are identical or very
similar, it is symmetrical balance. Asymmetry uses compositional
elements that are offset from each other, creating a visually unsta-
ble balance. Asymmetrical balance is the most dynamic because it
creates a more complex design construction. Radial balance refers
to balance within a circular shape or object, offering stability and a
point of focus at the center of the composition [6, 12].

Since the asymmetrical balance is difficult to measure mathemat-
ically, in this paper we only consider symmetry, including bilateral
symmetry, rotational symmetry [22] and radial symmetry [23, 28].
Symmetry can be seen as the reverse measurement of asymmetry.

To detect bilateral and rotational symmetry, we use the symmetry
detection method in [22], which is based on matching symmetrical
pairs of feature points. The method for determining feature points
should be rotationally invariant, so SIFT is a good choice, although
scale-invariance is not necessary. Each feature can be represent-
ed by a point vector describing its location in x, y coordinates, its
orientation and (optionally) scale. Every pair of feature points is a
potential candidate for a symmetrical pair. In the case of bilater-
al symmetry, each pair of matching points defines a potential axis
of symmetry passing perpendicularly through the mid-point of the
line joining these two points. Unlike bilateral symmetry detection,
detecting rotational symmetry does not require the development of
additional feature descriptors. It can be simply detected by match-
ing the features against each other. Given a pair of non-parallel
feature point vectors, there exists a point about which feature vec-
tor can be rotated to precisely align with another feature vector.
The Hough transform [2] is used to find dominant symmetry axes
or centers. Each potential symmetrical pair casts a vote in Hough
space weighted by their symmetry magnitude. The rotational sym-
metry magnitude may be set to unity, while the bilateral symmetry
magnitude may involve the discrepancy between the orientation of
one feature point and the mirrored orientation of another feature
point. Finally the symmetries exhibited by all individual pairs in
a voting space are accumulated to determine the dominant symme-
tries present in the image. The result is blurred with a Gaussian and



Figure 3: Symmetrical gray scale images. The first row is images in bilateral symmetry with symmetry axis and symmetrical feature
points. The second row is images in rotational symmetry with symmetry center and symmetrical feature points.
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Figure 4: Images with high RFA based on statistic subject mask in [35]. The first column is “Rule of the third” composition and this
mask. The three rows on the right of the black line are related images, saliency maps and RFA scores.

the maxima are identified as dominant axes of bilateral symmetry
or centres of rotational symmetry. We compute symmetry number,
radius, angle and strength of the maximum symmetry for bilateral
symmetry, symmetry number, center and strength of the maximum
symmetry for rotational symmetry, as shown in Figure 3.

Based on the symmetry detection method in [23], we compute
the distribution of symmetry map after radial symmetry transfor-
mation for radial symmetry (see Section 4.4).

4.2 Emphasis
Emphasis, also known as contrast, is used to stress the difference

of certain elements. It can be accomplished by using sudden and
abrupt changes in elements. Emphasis is usually used to direct and
focus viewers’ attention to the most important area or centers of
interests of a design, because it catches your attention [12]. We
adopt Itten’s color contrasts [14] and Sun’s rate of focused attention
(RFA) [35] to measure the principle of emphasis.

Itten defined and identified strategies for successful color com-
binations [14]. Seven methodologies were devised to coordinate
colors using hue’s contrasting properties. Itten contrasts include
contrast of saturation, light and dark, extension, complements, hue,
warm and cold and the simultaneous contrast. We calculate six
color contrasts by the mathematical expressions in [26] and repre-
sent the contrast of extension as the standard deviation of the pixel
amount of 11 basic colors as in Section 4.4.

RFA was proposed to measure the focus rate of an image when
people watch it [35]. FRA is defined as the attention focus on some
predefined aesthetic templates or some statistical distributions ac-
cording to image’s saliency map. Here we adopt Sun’s response
map method [34] to estimate saliency. Besides the statistic subject
mask coincidence with “Rule of the third” composition method, de-
fined in [35], we use another two diagonal aesthetic templates [21].
A 3 dimensional RFA vector is obtained by computing,

RFA(i) =

∑Wid
x=1

∑Hei
y=1 Saliency(x, y)Maski(x, y)∑Wid
x=1

∑Hei
y=1 Saliency(x, y)

, (1)

whereWid andHei denote the width and height of image I , while
Saliency(x, y) and Maski(x, y) are the saliency value and mask
value at pixel (x, y), respectively. In Eq. (1), i = 1, 2, 3, represent-
ing different aesthetic templates. Illustrations of different masks are
shown in Figure 4, 5, and 6, together with related images, saliency
maps and RFA scores.

4.3 Harmony
Harmony, also known as unity, refers to a way of combining sim-

ilar elements (such as line, shape, color, texture) in an artwork to
accent their similarities. It can be accomplished by using repetition
and gradual changes when the components of an image are per-
ceived as harmonious. Pieces that are in harmony give the work a
sense of completion and have an overall uniform appearance [12].

Inspired by Kass’ idea of smoothed filters for local histogram [18],
we compute the harmony intensity of each pixel on its hue and
gradient direction in a neighborhood. We divide the circular hue
or gradient direction equally into eight parts, which are separat-
ed into two adjacent groups c = {i1, i2, . . . , ik|0 ≤ ij ≤ 7, j =
1, 2, . . . , k} and I\c (see Figure 7(a)), where ik+1 ≡ ik+1(mod8),
I = {0, 1, . . . , 7}. The harmony intensity at pixel p(x, y) is de-
fined as

H(x, y) = min
c
e−|h

m(c)−hm(I\c)||im(c)− im(I \ c)|, (2)

where

hm(c) = max
i∈c

hi(c)

im(c) = argmax
i∈c

hi(c),
(3)

where hi(c) is the hue or gradient direction in groups c. The har-
mony intensity of the whole image is the sum of all pixels’ harmony
intensity, that is

H =
∑
(x,y)

H(x, y). (4)
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Figure 5: Images with high RFA based on diagonal mask [21], shown in the first column. The three rows on the right of the black
line are related images, saliency maps and RFA scores.

0.6808 0.6451 0.6448 0.6390 0.6345 0.6280 0.6188 0.6131 0.6119

Figure 6: Images with high RFA based on back diagonal mask [21], shown in the first column. The three rows on the right of the
black line are related images, saliency maps and RFA scores.

(a) (b)

Figure 7: (a) Local histogram on eight equal parts. (b) The
gradient distribution of ‘1300.jpg’ in IAPS on red channel.

4.4 Variety
Variety is used to create complicated images by combining dif-

ferent elements. A picture made up of many different hues, values,
lines, textures, or shapes would be described as a complex picture,
which increases humans’ visual interestingness [12].

However, harmony and variety are not opposites. A careful blend
of the two principles is essential to the success of almost any work
of art. Artists who focus only on harmony and ignore variety might
find it easier to achieve balance and unity; but the visual interest in
the piece could be lost. On the other hand, artists who focus only
on variety and not harmony would make their works too complex;
and consequently, the overall unity of the piece could be lost, which
makes viewers confused [12].

Each color has a special meaning and is used in certain ways by
artists. We count how many basic colors (black, blue, brown, green,
gray, orange, pink, purple, red, white, and yellow) are present and
the pixel amount of each color using the algorithm proposed by
Weijer et al. [36]. Image examples of different color variety are
shown in Figure 8.

Figure 10: Images of different texture gradations, but with sim-
ilar content meanings and emotions.

Gradient depicts the changes of values and directions of pixels
in an image. We calculate the distribution of gradient statistically
(Figure 7(b)). For directions, we count the number of pixels in
the eight regions equally divided of the circle. For lengths, we
divide the relative maximum length (RML) into 8 parts equally, by
computing RML as,

RML = µ+ 5σ, (5)

where µ and σ are respectively the mean and standard deviation of
the gradient matrix.

4.5 Gradation
Gradation refers to a way of combining elements by using a se-

ries of gradual changes. For example, gradation may be a gradual
change of a dark value to a light value [12].

We adopt the concepts of pixel-wise windowed total variation
and windowed inherent variation proposed by Xu et al. [40] and
their combination to measure gradation for each pixel. The win-
dowed total variation for pixel p(x, y) in image I is defined as

Dx(p) =
∑
q

gp,q|(∂xI)q|, Dy(p) =
∑
q

gp,q|(∂yI)q|, (6)



Figure 8: Images of different color variety. The first row shows images of high color variety with their color distributions in terms of
11 basic colors shown in row 2. The third and fourth rows respectively show images of low color variety and related distributions of
the 11 basic colors.

Figure 9: Eye scan path for measuring the principle of movement.

where q ∈ R(p), R(q) is a rectangular region centered at p, Dx(p)
and Dy(p) are windowed total variations in the x and y directions
for pixel p, which count the absolute spatial difference within the
window R(q). gp,q is a weighting function

gp,q = exp

(
− (xp − xq)2 + (yp − yq)2

2σ2

)
, (7)

where σ controls the spatial scale of the window.
The windowed inherent variation for pixel p(x, y) in image I is

defined as

Lx(p) = |
∑
q

gp,q(∂xI)q|, Ly(p) = |
∑
q

gp,q(∂yI)q|. (8)

Different from Dx(p) and Dy(p), Lx(p) and Ly(p) capture the
overall spatial variation, without incorporating modules.

It has been proven that in the relative total variation (RTV) de-
fined in Equ. (9), opposite gradients in a window cancel out each
other (Figure 10), regardless whether the pattern is isotropic or not.
We adopt the sum of RTV, the sum of windowed total variation
and the sum of windowed inherent variation to measure an image’s
relative gradation and absolute gradation, respectively.

RG =
∑
p

RTV (p) =
∑
p

(
Dx(p)

Lx(p) + ε
+

Dy(p)

Ly(p) + ε

)
, (9)

AGTx =
∑
p

Dx(p), AGTy =
∑
p

Dy(p), (10)

AGIx =
∑
p

Lx(p), AGIy =
∑
p

Ly(p). (11)

4.6 Movement
Movement is used to create the look and feel of action. It guides

and moves the viewers’ eye throughout the work of art. Movement
is achieved through placement of elements so that the eye follows a
certain path, like the curve of a line, the contours of shapes, or the
repetition of certain colors, textures, or shapes [12].

Based on Super Gaussian Component analysis, Sun et al. [34]
obtained a response map by filtering the original image and adopt-
ed the winner-takes-all (WTA) principle to select and locate the
simulated fixation point and estimate a saliency map. We calculate
the distribution of eye scan path obtained using Sun’s method (see
Figure 9).

4.7 Application to Emotion Classification and
Score Prediction

From the above six subsections describing the measurements for
each principle, we can see that: (1) PAEF are more interpretable
and semantic than EAEF; and are easier for humans to understand.
For example, humans can understand symmetry and variety bet-
ter than texture and line. (2) PAEF take the arrangements and or-
chestrations of elements into consideration and are more relevant
to image emotions and more robust in image emotion prediction,
as demonstrated in Sections 5.2 and 5.3.

We then apply the proposed PAEF to image emotion classifica-
tion and score prediction. Firstly, we combine the representation of
the six principles into one feature vector consistently. The dimen-
sions of these principles are 60, 18, 2, 60, 9 and 16 respectively.
The measurements for each principle are summarized in Table 2.
Secondly, we adopt Support Vector Machine (SVM) and Support
Vector Regression (SVR) both with radial basis function (RBF) ker-
nel to classify categorial emotions and predict dimensional emotion



Table 2: Summary of the measurements for principles of art. ‘#’ indicates the dimension of each measurement.
Principles Measurement # Short Description

Balance Bilateral symmetry 12 Symmetry number, Maximum symmetry radius, angle and strength
Rotational symmetry 12 Symmetry number, Maximum symmetry center (x and y), strength

Radial symmetry 36 Distribution of symmetry map after radial symmetry transformation
Emphasis Itten color contrast 15 Average contrast of saturation, contrast of light and dark, contrast of extension, con-

trast of complements, contrast of hue, contrast of warm and cold, simultaneous con-
trast

RFA 3 Rate of focused attention based on saliency map and subject mask
Harmony Rangeability of hue and

gradient direction
2 The first and second maximums of local maximum hues and gradient directions in

relative histograms of an image patch, and their differences; the combination of all
patches of an image

Variety Color names 12 Color types of black, blue, brown, gray, green, orange, pink, purple, red, white,
yellow and each color’s amount

Distribution of gradient 48 The distribution of gradient on eight scales of direction and eight scales of length
Gradation Absolute and relative vari-

ation
9 Pixel-wise windowed total variation, windowed inherent variation in x and y direc-

tion respectively, and relative total variation
Movement Gaze scan path 16 The distribution of gaze vector

scores, respectively. We use the LIBSVM1 to conduct the emotion
classification and score prediction task.

5. EXPERIMENTS
To evaluate the effectiveness of the proposed PAEF, we carried

out two experiments, affective image classification and emotion
score prediction. PAEF were then applied to predict emotions of
masterpieces.

5.1 Datasets
IAPS dataset. The International Affective Picture System (IAP-

S) is a standard emotion evoking image set in psychology [19]. It
consists of 1,182 documentary-style natural color images depicting
complex scenes, such as portraits, babies, animals, landscapes, etc.
Each image is associated with an empirically derived mean and s-
tandard deviation of valance, arousal, and dominance ratings in a
9-point rating scale. In this rating setting, rating score 9 represents
a high rating on each dimension (i.e. high pleasure, high arousal,
high dominance), and 1 represents a low rating on each dimension
(low pleasure, low arousal, low dominance). This dataset and relat-
ed emotion ratings were used for DES modeling. Similar to [24],
we only modelled on the valence and arousal dimension, without
considering the dominance dimension for its relatively small con-
tributing scope on emotions [11].

Subset A of the IAPS dataset (IAPSa). Mikels et al. [27] select-
ed 395 pictures from IAPS and categorized them into eight discreet
categories: Anger, Disgust, Fear, Sadness, Amusement, Awe, Con-
tentment, and Excitement.

Artistic dataset (ArtPhoto). This dataset consists of 806 artis-
tic photographs from a photo sharing site searched by emotion cat-
egories [26].

Abstract dataset (Abstract). This dataset includes 228 peer
rated abstract paintings without contextual content [26].

The latter three datasets (IAPSa, ArtPhoto, Abstract for short)
were used for CES modeling. The summary of these datasets is
listed in Table 3.

5.2 Affective Image Classification
We compared our emotion classification method with Wang et

al. [38], Machajdik et al. [26] and Yanulevskaya et al. [42]. We

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 11: Classification performance on the IAPSa dataset
compared to Machajdik et al [26], Yanulevskaya et al [42] and
Wang et al [38].

adopted a “one category against all” strategy for experimental set-
up. The data was separated into a training set and a test set using
K-fold Cross Validation (K=5) for 10 runs. Similar to [26], we opti-
mized for the true positive rate per class averaged over the positive
and negative classes, to overcome the limit of unbalanced data dis-
tribution of each category. We utilized PCA to perform dimension-
ality reduction on the feature vectors. Figures 11 to 13 illustrate
the comparison of average classification performance and standard
deviation between the proposed method and those of Machajdik et
al. [26], Wang et al. [38] and Yanulevskaya et al. [42] on the IAPSa
dataset, the Abstract dataset and the Artistic dataset, respectively.

From the results, it is clear that our method outperforms the
state-of-the-art methods, achieving an improvement of about 5%
on classification accuracy on average. This improvement arises be-
cause the state-of-the-art methods only consider the value of differ-
ent low-level visual features, without considering the relationships
of elements, while our proposed PAEF takes the elements’ arrange-
ments and orchestrations into account. The classification improve-
ment demonstrates that principles-of-art are important in express-
ing image emotions. From the results of standard deviation, we can
conclude that the proposed features are more robust for affective
image classification than the use of low-level visual features.



Table 3: Summary of the three datasets with discrete emotion categories for affective image classification.
Dataset Amusement Anger Awe Contentment Disgust Excitement Fear Sadness Sum
IAPSa 37 8 54 63 74 55 42 62 395

ArtPhoto 101 77 102 70 70 105 115 166 806
Abstract 25 3 15 63 18 36 36 32 228

Combined 163 88 171 196 162 196 193 260 1429
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Figure 12: Classification performance on the Abstract dataset
compared to Machajdik et al [26], Yanulevskaya et al [42] and
Wang et al [38].

Table 4: Measurements ranking list for the contribution to af-
fective image classification.

IAPSa Abstract ArtPhoto
Amusement jbeghacdkifl egdhkbfacjli gedjkhfcaibl

Anger bgkdfacjlehi efgjklabcidh befgjklacdih
Awe bjefgldchkai edkclbghafji cbkhfldegaji

Contentment bfhjegkdilac ebfkhacljdig fbcekhagdjli
Disgust ecdajhfbkigl eklghbcadfji gelbadhcfkji

Excitement fghdbcjkleia gjcdhkafiebl cbejdgkahifl
Fear dcghkaejfbli bgdhakcejfil cgdkhejlabif

Sadness fbecljhkagdi efkbcdgahjli fbhjdkglciea

Comparing different datasets, we can also observe that the clas-
sification accuracy on the Abstract and ArtPhoto datasets is bet-
ter than that on the IAPSa dataset. This is because in the IAPSa
dataset, the emotions are usually evoked by certain objects in the
images, while in the other two datasets, the images are taken by
artists who understand and utilize the principles-of-art better.

The 8-class confusion matrix of our final results is shown in
Fig. 14(a). Some pair-wise emotions are difficult to classify, such
as amusement and contentment, fear and disgust. This is easy to
understand, because one image can evoke different emotions. For
example, for the image shown in Fig. 14(b), some people may feel
amusement while others may feel contentment.

In order to evaluate the effectiveness of the measurements for
each principle and its contribution for affective image classifica-
tion, we built classifiers for each measurement. We sorted the mea-
surements based on the classification accuracy in a descending or-
der with the results in Table 4. The letters from ‘a’ to ‘l’ represent
the measurements of Bilateral symmetry, Rotational symmetry, Ra-
dial symmetry, Itten color contrast, RFA, Rangeability of hue and
gradient direction, Color names, Distribution of gradient, Absolute
variation, Relative variation, Relative total variation and Gaze s-

Amusement
Anger

Awe

Contentm
ent

Disgust

Excitement
Fear

Sadness
0.0

0.2

0.4

0.6

0.8

A
ve

ra
g

e 
tr

u
e 

p
o

si
ti

ve
 r

at
e

 Machajdik [26]  Yanulevskaya [42]  Wang [38]  Ours

Figure 13: Classification performance on the ArtPhoto dataset
compared to Machajdik et al [26], Yanulevskaya et al [42] and
Wang et al [38].
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Figure 14: (a) The average confusion matrix of classification
results on the three dataset. (b) The image named ‘2070.jpg’ in
the IAPS dataset.

can path, respectively. Readers can refer to Table 2 for the detailed
meanings of each measurement.

From the results and the visulization results for different princi-
ples, we draw the following conclusions: (1) The best features for
affective image classification are dependent on the emotion catego-
ry, which means that different combinations of principles express
different emotions. (2) The best features for affective image clas-
sification are dependent on the dataset, this is because the three
datasets vary greatly from each other. Hence, based on the above
two observations, we use all the principle features instead of select-
ing optimal feature combinations for different datasets and differ-
ent emotions. (3) In terms of roles of different principles, symmetry
(balance) and harmony tend to express positive emotions more of-
ten, while emphasis (contrast) and variety play an important role in
classifying all the 8 categories of emotions. (4) Relative variation
performs better than absolute variation, the eye scan path (move-
ment) mainly focuses on the emphasis area, while RFA is extreme-
ly effective for emotion classification in the Abstract dataset.



Table 5: Comparison of MSE (standard deviation) for VA di-
mensions in the IAPS dataset.

Machajdik [26] PAEF Combination
Valence 1.49(0.21) 1.31(0.15) 1.27(0.13)
Arousal 1.06(0.13) 0.85(0.10) 0.82(0.09)

Figure 15: Emotion prediction results of our method. The
black plus signs and blue circles represent the ground truth and
our predicted values of image emotions, respectively.

5.3 Emotion Score Prediction
We used SVR with RBF kernel to model the VA dimensions

on the IAPS dataset, and computed the mean squared error (MSE)
of each dimension as the evaluation measurement. The lower the
MSE is, the better the regression is. We compared our method with
Machajdik’s features [26] and the combination, using 5-cross vali-
dation for 10 runs. From Table 5, we can see that: (1) both valence
and arousal are more accurately modeled by our principles-of-art
features than Machajdik’s features; (2) both our principles-of-art
features and Machajdik features predict arousal better than valence;
and (3) there is little improvement (3.05% and 3.53% decrease in
MSE for valence and arousal) by combining them together, indi-
cating that the principle features provide a strong enough ability in
understanding image emotions. Some regression results are giv-
en in Fig. 15, which demonstrates the effectiveness of our image
emotion prediction method.

We also conducted the VA emotion regression task using each of
the six principles. From the MSE results in Table 6, we find that
variety, emphasis, gradation and balance have higher correlations
with valence, while emphasis, variety, harmony and movement are
more correlated with arousal.

5.4 Inferring Masters’ Moods
Masters have strong abilities to capture scenes or subjects into

artworks which evoke strong emotional responses [42, 15]. Infer-
ring the emotions implied in the masterpieces can immensely help
in understanding the essential moods that the masters intended to
express at that time.

Here we gathered 1,029 paintings and 158 watercolors of Vin-
cent van Gogh, a famous Post-Impressionist painter, to infer his
moods at different life periods, including early years (1881-1883),
Nuenen (1883-1886), Antwerp (1883-1886), Paris (1886-1888), Ar-
les (1888-1889), Saint-Remy (1889-1890) and Auvers (1890).

We used PAEF to predict the implied image emotions from van
Gogh’s artworks based on the training results of the three differ-

Table 6: MSE of each principle for VA dimensions in the IAPS
dataset.

Ban Emp Har Var Gra Mov
Valence 1.85 1.72 2.16 1.67 1.78 2.37
Arousal 1.52 0.98 1.12 1.07 1.61 1.15

Fear Awe Contentment Contentment Sadness
Awe Awe Excitement Neutral Excitement

Awe Excitement Disgust Sadness Contentment

Figure 16: van Gogh’s masterpieces, and our predicted emo-
tions. The paintings are “Skull with burning cigarette”, “Star-
ry night”, “Still life vase with fourteen sunflowers” and “Wheat
field with crows” from left to right. The three rows of predicted
emotions below the paintings are based on the training results
in IAPSa, Abstract and ArtPhoto datasets, respectively.

ent datasets, IAPSa, Abstract and ArtPhoto, respectively. Some
representational paintings and our predicted emotions are shown
in Figure 16. We can observe that the training result in ArtPhoto
dataset performs best. So we used this training result to predict
all the artworks. The prediction result is shown in Table 7, from
which we can see the distribution of the number of his paintings
and watercolors. Note that one image can evoke different emotions.
For each life period of van Gogh in Table 7, the first and second
rows of each entry represent the numbers of paintings and water-
colors, respectively. Take the painting “Wheat Field with Crows”
(van Gogh’s last painting) as example, the comments from van-
goghgallery (www.vangoghgallery.com) are heavy, lonely, gloom,
and melancholy, and our prediction emotion is sadness, clearly in-
dicting the emotional status of his final days.

Table 7: Emotion prediction result of van Gogh’s artworks.
Period Am An Aw Co Di Ex Fe Sa Ne Sum
Early 0 0 0 1 4 3 9 22 8 35

0 0 0 1 7 3 15 22 45 88
Nuenen 0 0 1 3 41 26 73 75 25 200

0 0 0 0 3 1 3 10 9 24
Antwerp 0 0 0 0 3 0 5 2 1 7

0 0 0 0 0 0 0 0 0 0
Paris 11 1 3 7 35 47 44 45 53 224

0 0 0 0 1 0 3 2 4 10
Arles 11 5 1 19 45 69 52 49 87 304

1 0 0 0 6 7 3 1 3 21
SaintRemy 8 12 3 11 36 36 22 11 57 177

1 0 0 0 1 6 1 1 2 11
Auvers 6 0 5 3 7 22 6 8 29 82

0 0 0 0 0 0 1 2 2 4

5.5 Discussion
From the classification results in Section 5.2 and the regression

results in Section 5.3, we can conclude that PAEF can indeed help
to improve the performance of image emotion recognition. The re-
sults demonstrate that the principles-of-art features can model im-
age emotions better and are more robust in image emotion recogni-
tion than the elements-of-art features. PAEF are especially helpful
and accurate to handle the abstract and artistic images, the emotions
of which are mainly determined by the composition.



However, as our method does not consider the semantics of im-
ages, it does not work so well for the images whose emotions are
dominated by some specific objects, concepts or scenes; and the
emotion recognition performance is relatively low for these images.
For example, in one image containing snakes, the emotion of fear
may directly be evoked by the presence of snakes. In such cas-
es, our method may fail. Combining the visual concept detection
method, such as SentiBank [4], may help to tackle this problem and
further improve the emotion recognition performance.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed to extract emotion features based on

principles-of-art (PAEF) for image emotion classification and scor-
ing task. Different from previous works that mainly extract low
level visual features based on elements-of-art, we drew inspirations
from the concept of principles-of-art for higher level understanding
of images. Experimental results on affective image classification
and regression have demonstrated that the performance of the pro-
posed features is superior over the state-of-the-art approaches. The
application of PAEF in emotion prediction of masterpieces is also
interesting and has much potential for future research. PAEF can
also be used to develop other emotion based applications, such as
image musicalization [44] and affective image retrieval [45].

For further studies, we will continue our efforts to quantize the
principles using more effective measurements and to improve the
efficiency for real time implementation. Applying high level con-
tent detection and recognition methods may improve the perfor-
mance of emotion recognition. In addition, we will consider using
social network (e.g., Flickr) data, combining the descriptions and
images to jointly learn the expected emotion of specified image
based on visual-textual-social features [9] and analyzing the com-
ments to distinguish expected emotion and actual emotion. How to
analyze videos using visual features together with acoustic signals
from an emotional perspective is also worth studying.
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