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Abstract Accurate video tagging has been becoming

increasingly crucial for online video management and

search. This article documents a novel framework called

comprehensive video tagger (CVTagger) to facilitate

accurate tag-based video annotation. The system applies

both multimodal and temporal properties combined with a

novel classification framework with hierarchical structure

based on multilayer concept model and regression analysis.

The advanced architecture enables effective incorporation

of both video concept dependency and temporal dynamics.

Using a large-scale test collection containing 50,000

YouTube videos, a set of empirical studies have been

carried out and experimental results demonstrate various

advantages of CVTagger over the state-of-the-art

techniques.
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1 Introduction

Recent years have witnessed a rapidly growing demand for

various video applications, ranging from online advertising

to education. As an effective technology to facilitate large-

scale video data management, video information retrieval

(VIR) has received a lot of research attentions from mul-

timedia system and information retrieval communities [1,

6, 24, 29]. Consequently, many intelligent techniques have

been recently proposed to support automatic classification

and recognition. In particular, developing new technologies

to support accurate video tagging is becoming more and

more important.

As the name implies, video tagging is a mechanism for

assigning a set of text labels (keywords or terms) to

video [13]. This kind of metadata is very helpful to

describe and access video contents, especially under online

environment. The most naive approach is to manually

annotate each video. Many modern Web 2.0 content

sharing applications, such as YouTube1 and Metacafe,2

provide such service to assist users to describe, share and

search their uploaded video contents with several tags.

However, the manual tagging is an intellectual expensive

and time consuming process. At the same time, user-pro-

vided tags are often incomplete, inconsistent and sparse.

Hence, extensive research efforts have been dedicated to

develop systems or algorithms to automate the process.

While different approaches have been proposed, the tech-

nological is still in its early stage and has been proven to be

extremely challenging. In fact, successful system is largely

dependent on the solutions for three closely connected

issues: (1) computation of comprehensive signature to

effectively capture discriminative information and model

rich set of online video characteristics (e.g., multimodal

information, temporal patterns and their dependency), (2)

careful design of high-quality classification scheme for
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effectively modeling and classifying the relationship

between textual labels and video documents, and (3) design

and development of large-scale test collections and meth-

odology to perform reliable cross-method comparison to

identify the state-of-the-art.

The usage of concepts has been proved to be very useful

for enhancing efficiency and effectiveness of video retrie-

val and management. As a key component in many video

tagging systems, concept detection has been actively

explored by different research communities for a long

period [12]. The TREC video retrieval evaluation

(TRECVID) [28] started a high-level feature extraction

task since 2005, in which the high-level features are

essentially a set of semantic concepts. Early studies on

video concept detection mainly focused on news videos

and in recent years, more video genres were gradually

included, such as documentaries, educational videos, and

consumer videos [2]. With the popularity of social media,

how to annotate online videos also attracted a lot of

research attentions (such as in TRECVID 2010 3). How-

ever, the concepts studied before are usually simple in

comparison with the tags appearing in real applications.

For example, the concepts included in the widely used

ontologies, such as LSCOM [22] and Mediamill-101 [30],

are about objects (e.g., car), scenes (e.g., sunset), and

simple events (e.g., walking). The folksonomy related to

the video documents is much more complex and abstract.

Further, the user-generated tags often describe Web videos

at a syntactic or story level, such as travel, happiness,

surgery and crazy man. They are mainly about different

atomic concepts.

Recently, several approaches have been proposed to

apply statistical models or machine learning techniques to

online video tagging [27, 32]. Overall, the process consists

of two main steps: content modeling using low-level video

features and text label identification via machine learn-

ing based annotation algorithm. The effectiveness of dif-

ferent solutions to this problem is heavily dependent on

their ability to capture salient information for separating

raw signal from others. Video documents can contain rich

and complex contents, associated with many different

acoustic, visual and temporal characteristics. The features

might have different contributions to concept or event (text

label) identification process. Indeed, it is not trial task to

develop advanced schemes for intelligently integrating

them to construct comprehensive video signatures. While

using low-level features as video content signature has a

relatively long history, bridging the semantic gap from

low-level features to high-level semantic concepts still

remains an extremely challenging problem. Similar to

natural language, one video document could be associated

with many different meanings at different semantic levels

(e.g., primitive concepts from the raw contents and

semantic concepts). Each textual label (tag) has certain

probability associated with various concepts at different

levels. The basic (atomic) concepts could have strong

dependencies with certain semantic level concepts. The

failure to comprehensively model the complex association

that exists between various concepts may result in poor

system performance. Moreover, video concept hierarchy

offers a natural and effective way to describe contextual

relationships between concepts. However, very surpris-

ingly, the existing studies pay less attentions on exploring

the ways to model and apply concept hierarchy and

dependency.

In this article, we present a novel technique called

comprehensive video tagger (CVTagger) based on

advanced feature extraction scheme and a layering archi-

tecture to facilitate effective tag-based video annotation.

Our system uses dual-layer architecture consisting of two

basic components: (1) video preprocessing module and (2)

hierarchical concept profiling module—an advanced clas-

sification framework with multiple-layered structure. The

main technical contributions of our approach can be sum-

marized as follows:

• Going beyond audio and visual feature extraction, to

achieve comprehensive video content modeling, the

technical design of the video preprocessing module

aims at not only gaining high-quality multimodal

feature combination but also effectively integrating

the cues about temporal characteristics. It is based on

an important observation that video documents from a

certain category generally contain fixed temporal

characteristics. This suggests that the use of temporal

information can improve the quality of video modeling

process.

• Hierarchical concept profiling module is designed

based on the basic principle of WordNet [20] to break

down semantic gap into two subgaps: (1) gap between

low-level video features and atomic video concepts and

(2) gap between atomic video concept and semantic

video concepts. A novel structure with three intercon-

nected functionality layers is developed to comprehen-

sively model and represent the association between

atomic concepts and semantic level concepts with a

divide-and-conquer strategy (i.e., the gap is split into

three smaller gaps and bridged with different layers in

our scheme). To the best of our knowledge, no similar

approach has been reported in the previous literature.

• To assess the performance of the proposed system, a set

of experimental studies have been designed and carried

out based on a large video test collection. The

comparative analysis of various methods reveals that
3 http://www-nlpir.nist.gov/projects/tv2010/tv2010.html.
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CVTagger achieves substantial performance improve-

ments on accuracy and robustness on tag estimation and

different kinds of VIR tasks.

The structure for rest of the article is as follows: Sect. 2

gives a brief overview and analysis of related work in the

area of video tagging. We provide a discussion and com-

parison on their assumptions and limitations. In Sect. 3, we

present details about architecture of our proposed CVT-

agger. The structure of each system component and their

learning algorithms are introduced and analyzed. Section 4

reports our experimental configuration including test col-

lection, evaluation metrics used and evaluation methodol-

ogy. Sect. 5 presents and analyses experimental results.

Finally, the paper is concluded with summary and future

work in Sect. 6.

2 Related work

Automated tagging aims to assign a set of textual keywords

to describe the multimedia contents [3, 8–10, 25, 26]. Most

existing research on automatic video tagging is based on

machine learning technology. A typical process includes

two key steps. First, a labeled training set is collected, and

then we train statistical learning models for the to-be-

labeled tags, separately or jointly, with the learning data.

These models can be applied to predict the tags for newly

given video clips. Generally, tag prediction can be treated

as a binary classification problem (i.e., a video clip can be

predicted as ‘‘positive’’ or ‘‘negative’’ according to whether

it should be associate with a tag).

How to extract effective video signature plays a very

important role in determining final performance of the

tagging system. There has been a long history of strug-

gling to use low-level features (color histograms, texture,

and shape motion) for video content description [14, 15,

33, 35]. Starting from 2005, TRECVID organizes the

video high-level feature extraction task [28], aiming to

evaluate current research and development in the area of

video feature extraction. On the other hand, various

learning algorithms have been used for video annotation

and they include support vector machine, Gaussian

mixture models, maximum entropy methods, a modified

nearest-neighbor classifier, and multiple instance learn-

ing [21]. Naphade and Smith [21] provided a survey on

the video tagging algorithms applied for TRECVID high-

level feature extraction task, where a great deal of

modeling methods and features can be found. However,

the tags appearing TRECVID collections usually repre-

sent simple concepts, such as those from LSCOM [22],

whereas the contents of online videos could be much

more complex.

While there have been a lot of research studies in the

domains of video analysis and data management, much less

efforts focus on automatic online video tagging. It has been

found that the large gap between community-contributed

tags and low-level audiovisual features degrades the pre-

diction accuracy greatly. Thus, Siersdorfer et al. [27] and

Zhao et al. [38] adopted search-based methods for solving

the problem via leveraging the effects of online video

content redundancy. The key idea is to model tagging

problem as k-nearest neighbor (k-NN) search process. For a

given video, its near-duplicates or a set of similar videos

are identified and their tags are then inferred. Such

approaches only work well if a large redundancy exists in

video set. Our proposed approach, which builds models for

tag prediction, can complement well with these search-

based tagging techniques. Toderici et al. [32] proposed a

tagging approach based on the contents of user-uploaded

videos. In the scheme, more than 20,000 models were

trained using the audiovisual features extracted from a

large set of YouTube videos. These models are applied to

analyze new videos and recommend the relevant tags.

On the other hand, temporal variation is an important

clue for video data modeling and contain rich information

for video content modelling, which goes beyond traditional

visual and audio features. Interestingly, it has been largely

overlooked in most existing studies. One of the key reasons

is that many popular learning methods are based on i.i.d.

assumption. Song et al. [31] utilized temporal property for

pre-clustering in home video annotation, whereby manual

effort can be reduced by only labeling one sample for each

cluster in training set. Kender and Naphade [16], Yang and

Hauptmann [37] and Liu et al. [17] proposed to utilize the

property to refine the annotation results in a post-process-

ing procedure. In [36], Wang et al. proposed a multigraph

learning scheme to explore associations between tempo-

rally adjacent video clips. Most of these existing works

usually only explore temporal information in a post-pro-

cessing step. Distinguished from the schemes, our proposed

method considers the effects of temporal information using

the hybrid modeling approach and thus is able to integrate

temporal dynamics more effectively.

3 The comprehensive video tagger (CVTagger) system

In this section, we introduce the CVTagger system to

facilitate effective tag recommendation process over large

video collections. As graphically depicted in Fig. 1, our

system consists of two major modules: (1) video prepro-

cessing module for video sequence modeling and feature

extraction and (2) video concept profiling module with

layered structure for accurate tag recommendation. The

notation used in this article is defined in Table 1.
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3.1 Video preprocessing module

Advanced content modeling is essential to effective video

tagging process. It is desirable that the video features

extracted can describe content-related information com-

prehensively. To facilitate the process, video preprocessing

in CVTagger consists of two major procedures: video

segmentation and extraction of physical features. Distin-

guished from the previous approach, a multimodal

descriptor is designed for the purpose of comprehensive

content modeling. After a video sequence is received, our

system firstly partitions it into several short fixed length

time-frames. In CVTagger, the length of each frame is set

to be 1.5 s and from each video segment s, the associated

multimodal descriptor can be calculated,

vfs ¼ ½vfðv;sÞ; vfða;sÞ; tss; tes�; ð1Þ

where vfs; tss and tes denote the content features extracted,

starting time of video segment s, and end time of video

segment s. With this method, the physical representation

foreach video segment includes three different kinds of

characteristics: local visual information—vfðv;sÞ, local

acoustic information—vfða;sÞ and time information—tss and

tse. This novel structure provides more informative repre-

sentation for video segments. And each video document

can be treated as a bag of feature vectors,

vf ¼ ½vf1; vf2; . . .; vfS�; ð2Þ

where vf denotes a set of features extracted from a video

sequence. Unlike static images, video signals are

dominated by the streaming dynamics. It consists of large

amount of local information from various modalities over

temporal dimension, which could be very crucial for dis-

crimination process. Thus, the main advantage for our

approach is strong content characterization capability via

seamlessly combining heterogeneous video features. Our

system considers four different kinds of visual features

including color, texture, shape and motion. For color,

texture and shape feature, we use the algorithm present in

[24] to do extraction. Motion characterization is very

important to video modeling and understanding. It aims to

detect activity in a scene or difference in image sequences.

In fact, temporal and spatial information described by

motion features is very exclusive and can not be easily

captured via other kinds of visual features. In CVTagger,

we apply the algorithm proposed in [39] to extract eight

dimensional camera motion feature from p frames in

compressed domain. Each motion feature includes tilt up,

tilt down, pan left, pan right, zoom in, zoom out, still and

unknown. In addition, our system considers three different

kinds of acoustic features extracted from each video

sequence and the algorithms presented in [25] are applied

for extraction:

• Timbral feature (TF): It characterizes the timbral

property. The timbral features computed include Mel-

frequency cepstral coefficients, (MFCCs) [18], spectral

centroid, rolloff, flux, low-energy feature [34], and

spectral contrast [19]. The total dimensionality is 20.

• Spectral feature (SF): In CVTagger each spectral

feature vector contains auto-regressive (AR) features;

Fig. 1 Architecture of CVTagger system
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spectral asymmetry, kurtosis, flatness, crest factors,

slope, decrease, variation; frequency derivative of

constant-Q coefficients; and octave band signal inten-

sities [19]. The total dimensionality is 20.

• Rhythmic feature (RF): It represents temporal dynam-

ics of sound over a certain duration. The rhythmic

features calculated include: beat histogram [34];

rhythm strength, regularity and average tempo [19].

The total dimensionality of rhythmic feature is 12.

3.2 Hierarchical concept profiling module

This section introduces the details about hierarchical con-

cept profiling module for video concept modeling. It aims

to provide accurate tag recommendation via modeling

probabilistic relationships between video concepts at dif-

ferent levels and textual keyword (tags).

3.2.1 Key system architecture

To minimize the semantic gap between low-level multi-

modal features and high-level concepts effectively, the

second module in our proposed system is designed based

on divide-and-conquer principle and utilizes hierarchical

structure to model representation of video documents at

three different levels. They include (1) semantic level

concepts to represent high-level subjects, (2) atomic con-

cept to represent more specific subjects, and (3) tags—

textual keywords about video content. Figure 2 illustrates a

good example for contextual and logical relationship

between concepts at different levels.

Correspondingly, the second module’s architecture

consists of three interconnected functionality layers:

semantic concept modeling layer (SCML), atomic concept

modeling layer (ACML) and tag relevance modeling layer

(TRML). As depicted in Figs. 1 and 3, CVTagger’s basic

layout is very similar to multilayer perceptron neural net-

work [5]. Each layer contains different number of GMM-

based computation nodes and is fully connected to each

other. This means that a node in any layer is linked to all

the nodes in the previous layer and computational outputs

generated from all the nodes in the previous layer serve as

its input. To enhance modeling capacity further, our

framework also considers two different kinds of depen-

dency weights:

• Concept dependency weight (CDW)—aims to describe

dependency between each semantic concept and a set of

atomic level concepts. The CDW vector for concept c

can be denoted as,

CDWc ¼ ½cwðc;1Þ; . . .; cwðc;acÞ; . . .; cwðc;ACÞ�; ð3Þ

where cwðc;acÞ is dependent weight between semantic

concept c and atomic level concept ac.

• Tag dependence weight (TDW)—aims to describe

dependency between tags and atomic level concepts.

The TDW vector for tag t can be,

TDWt ¼ ½twðt;1Þ; . . .; twðt;cÞ; . . .; twðt;CÞ�; ð4Þ

where twðt;CÞ is the dependency weight between tag t

and semantic concept C.

Learning algorithm to estimate TDWt and CDWc will be

introduced in the Sect. 3.2.2. Each node is designed to

perform probabilistic inference for concepts or tags. The

number of nodes in SCML, ACML and TRML equals to

number of semantic concepts, atomic concepts and tags.

We apply the GMMs as basic statistical model at each node

due to its greatest flexibility and capability of modeling

different kinds of distributions. To achieve optimal out-

comes, the parameters of the GMMs in our framework are

estimated using classical EM algorithm. Basic proce-

dure consists of two main steps. The posterior probabil-

ity is estimated in E-step. The M-step aims to update the

mean vectors. The procedure will be repeated until the log-

likelihood value is increased by less than a predefined

Table 1 Summary of symbols and definitions

Symbols Definitions

C Total number of high-level semantic concepts

AC Total number of atomic video concepts

S Total number of video segments

T Total number of video tags

K Number of mixture components in GMMs

A Annotation length (size of tag set)

Gc GMMs for high-level semantic concept c

Gac GMMs for atomic level concept ac

ACML Atomic concept modeling layer

SMCL Semantic concept modeling layer

TRML Tag relevance modeling layer

CDW Concept dependence weights between ACML and SCML

TDW Tag dependence weights between SCML and TRML

s Notation of video segment s

f Notation of feature f

t Notation of tag t

c Notation of high-level semantic video concept c

ac Notation of atomic video concept ac

k Notation of kth Gaussian component

wk Weight of the kth Gaussian component

lk Mean of the kth Gaussian component

Rk Covariance matrix of the kth Gaussian component

V Vocabulary of test collection

jV j Size of vocabulary

TR Tag relevance vector generated by TRML
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threshold from one iteration to the next. When the EM

iteration stops, a trained GMMs with optimal parameters

can be obtained.

As shown in Fig. 3, the ACML serves as input layer and

consists of an array of GMMs based atomic concept pro-

filing model, aiming to capture statistical properties of

different features. The probability of an atomic video

concept ac can be modeled as a random variable drawn

from a probability distribution for a given feature vector

VF. It can be presented as a mixture of multivariate com-

ponent densities:

DacðxjhÞ ¼
XK

k¼1

wac
k NðVF; lack ;Rac

k Þ; ð5Þ

where wac
k ; l

ac
k , and Rac

k are the weight, mean and covari-

ance matrix of the kth Gaussian component, respectively. h
denotes the set of all the model parameters—wac; lac;Rac.

VF is the composite feature vector serving as input. K is

the total number of Gaussian components and the proba-

bilistic density can be calculated using a weighted com-

bination of K Gaussian densities,

pðacjx; lk;RkÞ ¼
1

ð2pÞd=2jRkj
1
2

e�
1
2
ðz�lkÞTR�1

k ðz�lkÞ: ð6Þ

With the GMM based statistical model and the features

extracted, the outputs from the ACML are,

PACM ¼ ½pð1jVFÞ; . . .; pðacjVFÞ; . . .; pðACjVFÞ�; ð7Þ

where pðacjVFÞ is the probability of an input video

sequence belonging to atomic concept ac based on VF andPAC
ac¼1 pðacjVFÞ ¼ 1. Also PACM represents probabilistic

histogram over different atomic video concepts for a given

video feature vector VF.

The second layer of our system (SCML) aims to model

probabilistic relationship between semantic concepts and

atomic level concepts. Similar to ACML, computational

nodes in SCML estimate concept relevance scores using

outputs from ACML (PACM) and concept dependency

weights. The outputs of SCML (PSCM) can be also treated

as a set of likelihood scores, describing probabilities of an

input video sequence belonging to various high-level

semantic concepts. It can be denoted as,

PSCM ¼ ½pð1jPACM; CDW1Þ; . . .; pðCjPACM; CDWCÞ�:
ð8Þ

Taking the set of likelihood values from the SCML and tag

dependence weights, the third layer of our system (TRML)

can derive a set of relevance scores over different tags

using the pre-trained GMMs. Thus, the tag relevance scores

can be given by,

PTRM ¼ TR ¼ ½tr1; . . .; trT � ¼ ½pð1jPSCM; TDW1Þ;
. . .; pðTjPSCM; TDWTÞ�;

ð9Þ

where TR ¼ ½tr1; . . .; trT � is a vector storing tag relevance

scores. After ranking the scores, top k tags are selected as

the annotation of the input video sequence.

3.2.2 Learning CDW and TDW via expectation

maximization

As discussed in Sect. 1, online video content can be rich

and complex. To achieve robust and effective tag recom-

mendation, the dependencies between concepts at different

levels and tags should be taken into account when

designing video tagging scheme. In this study, the process

for learning concept dependency weights and tag depen-

dency weights is modeled as a maximum likelihood esti-

mation problem. For a given concept c or tag t, a set of

training examples fxi; lsig need to be prepared. lsi 2
f�1;þ1g indicates whether inputs are relevant to concept

c or tag t. xi is a set of probabilistic histogram from the

previous layer—(p1ðiÞ; p2ðiÞ; . . .; pHðiÞ). Notice that when

deriving CDWc, input to training model xi is PACM and for

estimating TDWt;PSCM is used as input xi. The log-like-

lihood value can be calculated by taking the logarithm of

the product of phðiÞ,

LðW ;XÞ ¼
X

i

log
XH

h¼1

whphðiÞ: ð10Þ

Fig. 2 An example of video concept hierarchy
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Input : Probabilities histogram: (p1(i), p2(i),...., pH(i))
Output: Weight vector: Wj which maximizes L(W ; X)

1. Initialization: Let all parameters to be random values ;
2. for j = 1, 2, 3, ...... do

3. E-Step: Expectation Computation

4. mj
ih = w

j
hph(i)

∑H
h=1 ph(i)

;

5. M-Step:
6. Update parameter wj+1

h = 1
N

∑
i mj

ih ;
7. Weighted log-likelihood maximization - L(W j+1) ;
8. IF |L(Wj+1) - L(Wj)| ≤ δ
9. Go to step 12;
10. ELSE
11. Go to step 2;

12. Return Wj ;

Algorithm 1: Learning dependence weights based on EM.

To estimate optimal weight W , learning process is

developed based on the expectation maximization (EM)

principle [4]. Algorithm 1 shows its detail learning pro-

cedure.4 It starts with randomly assigning values to all

the parameters to be estimated. Then, in E-Step, the

expected likelihood is computed for the complete data

(also called Q-function). The goal of M-step in our

algorithm is to tune the weights and maximize Q func-

tion. The optimization function for jth iteration can be

defined as below,

QðW ;W jÞ ¼
XH

h¼1

X

i

mihðlogwh þ log phðiÞÞ: ð11Þ

The M-step is to set Wjþ1 ¼ argmaxWQðW ;W jÞ. Since

linear combination is applied, the weighted log-likelihood

on the lower-level mixture of outputs is calculated using

Eq. 10. The iteration will stop until the value of LðW ;XÞ is
maximized.

4 Experimental configuration

In this section, we present the detail information about the

experimental configuration to facilitate performance eval-

uation and comparison. In Sect. 4.1, we give an introduc-

tion about a large video test collection used in our study.

Section 4.2 presents a summary about evaluation metrics

and analysis methodology. Then, we introduce the com-

petitors considered for performance comparison in

Sect. 4.3. All the methods evaluated have been fully

implemented and tested on a Pentium (R) D, 3.20 GHz,

1.98 GB RAM PC running the Windows XP operating

system.

4.1 Test collection

High quality test collection is important for the empirical

study in VIR research. However, less efforts have been

Fig. 3 Structure of the semantic

concept modeling layer (SCML)

and atomic concept modeling

layer (ACML)

4 The algorithm can be applied to estimate both.
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invested in creating large-scale testbed for comparing

video tag recommendation systems. To ensure accuracy

and fairness of the empirical results, we carefully design

and develop one large test collection containing 50,000

sequences and their original tags downloaded from You-

Tube using its API. The average length of the video clips is

150 s. The maximum duration is 200 s and the shortest one

is about 30 s. For the purpose of acoustic feature calcula-

tion, the audio tracks extracted are converted to 22,050 Hz,

16-bit and mono audio documents.

To the ground truth about video tags for cross-system

performance comparison, 21 human subjects are invited to

participate. They have mixed ethnicity and educational

background (ten Master students, ten Bachelor students and

one other). Among them, 11 is female and 10 is male. All

participants were between 21–30 years of age. The stan-

dard tag information was generated by attaching a tag to a

video item if at least eight people agree to assign the tag to

the sequence. At the end of the process, total 3,057 tags are

obtained. They belong to 25 different high-level topics and

70 atomic topics.

4.2 Evaluation metrics and methodology

Tag recommendation system aims to generate a set of

keywords, which can be applied for various kinds of VIR

applications. To conduct comprehensive performance

comparison over different schemes, we test the proposed

systems and its competitors on three VIR-related tasks.

They include,

• Video tag recommendation: for a given video sequence,

how accurate different systems determine a set of

recommended tags. The quality of tag sets are exam-

ined with different number of tags (5 tags, 10 tags, 15

tags and 20 tags).

• Video search based on the recommended tags: for a

given tag or a set of tags selected from corpus, search

system retrieves a list of similar videos from the

database and ranks them using tags.

• Video classification based on the recommended tags:

using the tags associated to video clips, classify the

videos in a test collection. The linear support vector

machines (SVMs) is applied as classifier since they

have demonstrate to better performance over other

classification schemes for text classification tasks [23].

Two different evaluation metrics are used for assessing

effectiveness of video tag recommendation task. They

include mean per-tag precision and per-tag recall. The top

5, 10, 15, 20 and 25 tags generated by the models are used

for performance comparison. The per-tag precision and

per-tag recall are formally given by

Precision ¼ jtCj
jtAj

Recall ¼ jtCj
jtGj

; ð12Þ

where jtGj is the number of the video clips labelled using

the tags included in the ‘‘ground truth’’, jtAj is the number

of the video clips annotated by our model using word t, and

jtCj is the number of the words used by the annotation

scheme and appearing in the ‘‘ground truth’’ generated by

human.

On the other hand, to measure the performance of dif-

ferent approaches in keyword based video search task, the

mean average precision (MeanAP) and the area under the

receiver operating characteristic curve (AROC) are used as

evaluation metrics. For a given query tag, MeanAP focuses

on the most relevant documents, while AROC emphasizes

whether relevant sequences are ranked higher than irrele-

vant ones.

In this study, the metric for measuring classification

method performance is classification accuracy (CA). Its

formula is,

CA ¼ TPR

TPRþ FPR
� 100: ð13Þ

TPR is true positive ratio and FPR is false positive ratio.

To ensure robustness of all the result, we apply tenfold

cross-validation to calculate classification accuracy.

4.3 Competitors for performance comparison

In this study, we compare and analyse a few of methods for

generating online video tags, including our proposed

method CVTagger and two state-of-the-art approaches—

AVT [27] and RT [32].5 In RT, for each tag, 20K training

samples are used as training examples and is about 0.4 %

of test collection size. Based on this, in our implementa-

tion, for each tag, size of training set is about 30 videos

(0.45 % of our test collection). Additionally, to study how

different kinds of feature combinations can impact final

performance of the proposed approach, CVTagger is tested

based on three feature combinations (CVTagger with audio

features denoted by CVTagger(AF), CVTagger with visual

features denoted by CVTagger(VF) and CVTagger with

both audio and visual features denoted by CVTag-

ger(ALL). Details about visual features and audio features

can be found in Sect. 3.1. For AVT, our empirical study

also considers two different kinds of tag assignment algo-

rithms. They include,

• AVT(BaseOrig): Feature vector is constructed using the

raw tags manually assigned by the owner of the video

in YouTube.

5 This paper uses AVT and RT to symbolize the approach present

in [27] and [32], respectively.
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• AVT(TagRank): Feature vector is constructed using

tags generated by overlap redundancy aware neighbor-

based tagging plus the original tags. Iteration step is set

to be 2.

5 Experiment results

This section presents a set of experiment studies to assess

the performance of different techniques on various VIR

tasks including tag recommendation, video search based on

tags and video classification based on tags. The empirical

results clearly demonstrate superiorities of our proposed

system.

5.1 On tag recommendation

The first empirical study is to examine accuracies of vari-

ous tag recommendation systems on video annotation task.

We aim to compare and analyse the quality of the tag sets

generated by different approaches. Table 2 reports the

experimental results on the task for three systems with

various configurations based on two metrics. The sizes of

tag set considered are 5, 10, 15 and 20. It is shown that

AVT(BaseOrig) based on the raw tags provided video

owner achieves the worst effectiveness in terms of both

recall and precision rate. Furthermore, while the

AVT(TagRank) and RT techniques can provide better

performance than AVT(BaseOrig), the related performance

gain is not significant. The main reason is that the AVT

technique relies on low-level visual characteristics to

generate video content signature for duplication and over-

lap detection. It might not be able to effectively capture

discriminative information between video and thus lead to

inaccurate identification results. In Table 2, the last three

rows present the accuracies of our proposed system with

different video feature settings. Overall, the experimental

results clearly demonstrate that CVTagger(ALL) signifi-

cantly performs better than all other approaches. For

example, comparing to RT and AVT(TagRank), based on

the top five tags generated, CVTagger(ALL) improves the

precision ratio from 0.512 and 0.559 to 0.687 individually.

One of our key ideas behind CVTagger development is that

accurate tag recommendation can be obtained if different

low-level features can be carefully integrated and conse-

quently better video representation can be achieved. In fact,

the empirical results provides a strong evident about how

the proper feature combination can effectively boost up the

accuracy. In comparison to CVTagger(AF) and CVTag-

ger(VF), a significant gain can be observed by CVTag-

ger(ALL) with more feature considered on both evaluation

metrics over all different sizes of tag set. And the

improvement ranges from 10 to 21 %. Another key finding

obtained from the study is that visual features contribute

more annotation process than acoustic features can (Fig. 4).

5.2 On video search

Effective keyword based video search is often required in

many real online applications. In the second study, we

present a set of experimental results to verify the effec-

tiveness of CVTagger and other competitors on keyword

based video retrieval task. Experimental methodology is

that given a keyword query kwq in vocabulary V , search

system will return a set of video sequences with rankings.

The metrics MeanAP and MeanAROC of each ranking are

calculated for performance comparison. As seen in the

previous set of experimental study, the CVTagger’s

advanced system architecture can effectively integrate

multimodal and temporal information to generate high-

quality tag-based annotations. Furthermore, with incorpo-

rating more discriminating information, superior video

search performance can be expected based on the tags.

The experimental results reported in Table 3 verify our

claim. Clearly, the proposed CVTagger(ALL) signifi-

cantly outperforms the other approaches. In particular, the

results show that comparing to all other approaches,

CVTagger(ALL) enjoys at least 12 % MeanAP and 15 %

MeanAROC increase on different sizes of tag sets. While

a nice gain over AVT(TagRank) can be found, the

improvement over AVT(BaseOrig) and the other methods

is even more substantial. At the same time, from last three

Table 2 Tag recommendation

effectiveness comparison

5, 10, 15 and 20 denote

annotation lengths—5, 10, 15

and 20

Tag recommendation scheme Precision Recall

5 10 15 20 5 10 15 20

RT 0.512 0.510 0.509 0.495 0.413 0.411 0.410 0.401

AVT(BaseOrig) 0.507 0.501 0.508 0.491 0.410 0.407 0.405 0.403

AVT(TagRank) 0.559 0.556 0.550 0.549 0.421 0.419 0.412 0.409

CVTagger(AF) 0.501 0.499 0.492 0.488 0.397 0.393 0.391 0.389

CTagger(VF) 0.591 0.582 0.579 0.553 0.436 0.425 0.425 0.412

CVTagger(ALL) 0.687 0.672 0.678 0.672 0.532 0.529 0.512 0.515
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rows of Table 3 we can observe that when integrating

more features, CVTagger can bring substantial improve-

ment on search effectiveness. This is very similar to what

we can observe in the performance study on tag recom-

mendation. Once again, the empirical results verify the

claim that the quality of video tags can be boosted

through careful combination of different low-level video

features.

5.3 On video classification

With fast growth of large-scale video collections from

different domains, accurate classification becomes more

and more important for video data management. In this set

of empirical study, our main objective is to examine the

accuracy of online video classification based on the tags

generated by CVTagger and other approaches.

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

(j) (k) (l)

Fig. 4 Examples of the tag-based annotation results generated by

CVTagger. a Scene, natural, sky, tree, mountain. b Tank, military, news,

bomb, attack. c Sea, sky, natural, beach, good weather. d News, election,

msnbc, candidate, hot. e Building, CBD, central, flag, big, sky. f NBA,

basketball, sports, competition, game. g Scene, natural, waterfall, green,

water. h People, CBD, walking, buliding, sky. i Tank, military, news,

street, attack. j Sports, sccocer, news, competition, game. k Sports,

sccocer, news, goal, match. lNBA, basketball, sports,match, competition
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During the test, five different methods are evaluated to

generate tags about videos and then we construct feature

vectors for the purpose of classification. Table 4 shows the

results gained using different methods. We can find that

AVT(TagRank) clear performs better than AVT(BaseOrig)

using the original tags. The similar observation can be

gained for the classification task with different sizes of the

generated tags. In addition, AVT(TagRank) provides con-

sistently better classification results than RT does. On the

other hand, similar to findings in the previous two studies,

the performance of CVTagger(ALL) is much better than all

other schemes again. Main reason is that with an intelligent

system framework, CVTagger(ALL) provides a seamless

combination of different kinds of video features over

temporal domain. This directly leads to a better represen-

tation for video content, which contains more useful

information to support class separation. Also, its novel

inference structure can reduce semanic gap via multistep

bridging process greatly. Consequently, a much better tag-

based video annotation can be obtained and applied for

supporting accurate classification.

5.4 On robustness comparison

It is desirable that modern VIR systems are able to perform

properly under the noise environment. In fact, many

existing schemes are not designed to work effectively when

inputs accompany with media distortions. So, it is crucial

to conduct empirical study to assess robustness of different

tag recommendation schemes against different noises.

Basic methodology for our study is to change certain

amount of frames in video sequences with different kinds

of distortions. Then, a series of experiments are carried out

to evaluate and compare the corresponding annotation

performance of our system and its competitors. During this

test, 10 % of the key frames are randomly selected for

‘‘pollution’’ from each video. The noise cases consid-

ered in the study belong to two main categories: visual

distortion and audio distortion. They include blurring with

a 6� 6 median filters, random spread by eight pixels,

pixelization by six pixels, sharpen, darken, median noise,

Gaussian noise and salt&peeper noise [11]. The size of the

tag set considered here is set to be 10 and the evaluation

metric used is precision.

Figure 5 summarizes part of the experimental results

which compare quality of the tags generated by different

methods under various visual alternations. In general, cer-

tain level of accuracy loss can be observed for all the tested

schemes when input sequences are ‘‘polluted’’ with noises.

However, RT and AVT with different settings perform less

robustly than CVTagger does. For example, CVTag-

ger(ALL)’s precision has about 12 % precision drop when

tagging video inputs are blurred with a 6 � 6 filters. In

contrast, annotation accuracies of RT and AVT decrease

about 29 % and 23 %, which are relatively significant los-

ses. Also, in Gaussian noise case, CVTagger(ALL) only

loses around 10 % in terms of precision. Whereas about 29

and 28 % performance degradation can be observed for RT

and AVT. On the other hand, we also can find that when

integrating more features, CVTagger demonstrates more

robust and consistent performance over different noise

cases. For example, when video inputs are polluted by

random spread, CVTagger(AF) and CVTagger(VF) suffer

from 16.2 % and 26.9 % accuracy decreasing respectively.

In contrast, CVTagger(ALL)’s performance only drops

about 12.5 %. The difference is quite significant. Based on

the above results, we can conclude that CVTagger is more

robust under various kinds of visual noises.

Table 3 Video search

effectiveness comparison

5, 10, 15 and 20 denote

annotation lengths—5, 10, 15

and 20

Tag recommedation scheme MeanAP MeanAROC

5 10 15 20 5 10 15 20

RT 0.402 0.410 0.409 0.405 0.413 0.498 0.475 0.469

AVT(BaseOrig) 0.391 0.385 0.382 0.387 0.410 0.415 0.412 0.417

AVT(TagRank) 0.456 0.451 0.450 0.449 0.531 0.541 0.540 0.537

CVTagger(AF) 0.407 0.410 0.401 0.409 0.461 0.478 0.469 0.459

CTagger(VF) 0.457 0.452 0.442 0.462 0.542 0.557 0.529 0.558

CVTagger(ALL) 0.523 0.535 0.525 0.523 0.659 0.653 0.656 0.659

Table 4 Video classification accuracy comparison between different

tag recommendation schemes

Tag recommendation scheme CA (%)

5 10 15 20

RT 0.635 0.641 0.642 0.639

AVT(BaseOrig) 0.621 0.624 0.627 0.631

AVT(TagRank) 0.721 0.730 0.725 0.735

CVTagger(AF) 0.621 0.624 0.629 0.625

CVTagger(VF) 0.732 0.735 0.729 0.739

CVTagger(ALL) 0.818 0.819 0.815 0.817

CA is classification accuracy ratio. 5, 10, 15 and 20 denote annotation

lengths—5, 10, 15 and 20
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5.5 Discussion

This section explores two performance related issues: (1)

how GMMs parameter tuning process can influence tag-

ging performance of CVTagger system and (2) the effects

of CDW and TDW on tagging accuracy.

5.5.1 Effects of GMMs parameter tuning

In CVTagger, Gaussian mixture models (GMMs) serves

as the most fundamental component for statistical data

modeling. Each GMM includes K mixture components

and the value of K can influence modeling quality

greatly. Generally, a larger K suggests more mixture

components and costly computation. In contrast, a

smaller K might result in simpler model and less com-

prehensive information representation. Thus, how to gain

a good balance between efficiency and effectiveness is

very important but challenging issue when characterizing

complex data. To gain accurate estimation of K value,

we apply the minimum description length (MDL) prin-

ciple as a criterion for tuning value K [7]. The procedure

for estimating optimal value of K aims to maximize the

following equation:

log LðHs
f ML

jVf Þ �
lw

2
logN ð14Þ

where Hs
f ML

denotes the parameter set for a GMMs con-

taining K-mixtures, L denotes the likelihood function and

lw denotes how many free parameters K mixture GMMs

includes. Given a Gaussian mixture, we have the calcula-

tion formula as below,

lw ¼ ðk � 1Þ þ kd þ k
dðd þ 1Þ

2
ð15Þ

Based on the method above, the analysis results suggest

that the optimal value of K can be from 2 to 7. Meanwhile,

we also compare tagging precision of CVTagger(ALL)

with GMMs containing different numbers of mixture

components. Figure 6 shows the empirical results. It can be

found that when K ranges from 3 to 7, CVTagger dem-

onstrates the best performance in terms of tag recommen-

dation precision. The empirical outcome gives support to

theoretical findings.

Fig. 5 Comparison of robustness against different kinds of visual distortion. Annotation length is 10. Evaluation metric: precision. a Blurring

using 6� 6 Gaussian filter. b Salt and pepper noise. c Random spread by eight pixels. d Pixelization by six pixels
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5.5.2 Effects of CDW and TDW

The last study examines how CDW and TDW contribute

the effectiveness improvement of tagging process facili-

tated by CVTagger. We compare the precision and recall

ratios achieved by CVTagger with CDW and TDW and

CVTagger without CDW and TDW. Tables 5 and 6 show a

set of empirical results to demonstrate the effects of CDW

and TDW on tag recommendation accuracy. Tables 7

and 8 summarize experimental results about how CDW

and TDW can influence the performance of video search

process.

The main observation gained from the evaluation results

is that by consider CDW and TDW, CVTagger achieves

substantial improvements in tagging and video search

accuracy. For example, for CVTagger(ALL), incorporation

of CDW and TDW gives an additional 11.2 % lift in pre-

cision over CTagger without CDW and TDW when

annotation length is 5. On the other hand, CDW and TDW

give CVTagger(ALL) about 26.4 % increasing in recall

ratio when annotating video clips using five keywords. In

fact, similar results are also obtained for the annotation

containing 10, 15 and 20 keywords. Based on the discus-

sion above, we can conclude that CDW and TDW can

boost up performance of tagging process significantly

because more comprhensive semantic gap bridging can be

gained.

6 Conclusion

In recent years, due to a wide range of real applications,

automated video tagging has attracted a significant amount

of attentions from different research communities. While a

lot of efforts have been invested in developing new solu-

tions, reported performance is far from satisfaction. The

major causes for this stagnation include (1) lack of

advanced technique to intelligently combine various kinds

of information extracted from multiple modalities (e.g.,

visual, audio and temporal features) and (2) unavailability
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Fig. 6 Precision comparison of CVTagger(ALL) with GMMs

containing different numbers of mixture components

Table 5 Effects of CDW and TDW on tag recommendation accuracy (precision ratio)

Tag recommendation scheme Precision

5 10 15 20

W N W N W N W N

CVTagger(AF) 0.501 0.401 0.499 0.391 0.492 0.382 0.488 0.376

CTagger(VF) 0.581 0.505 0.576 0.491 0.572 0.478 0.549 0.459

CVTagger(ALL) 0.675 0.607 0.669 0.592 0.665 0.591 0.662 0.587

W denotes CVTagger with CDW and TDW and N denotes CVTagger without CDW and TDW. 5, 10, 15 and 20 denote annotation lengths—5,

10, 15 and 20

Table 6 Effects of CDW and TDW on tag recommendation accuracy (recall ratio)

Tag recommendation scheme Precision

5 10 15 20

W N W N W N W N

CVTagger(AF) 0.397 0.312 0.393 0.319 0.391 0.317 0.389 0.309

CTagger(VF) 0.426 0.327 0.421 0.315 0.416 0.309 0.407 0.315

CVTagger(ALL) 0.521 0.412 0.512 0.401 0.509 0.387 0.502 0.381

W denotes CVTagger with CDW and TDW and N denotes CVTagger without CDW and TDW. 5, 10, 15 and 20 denote annotation lengths—5,

10, 15 and 20
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of comprehensive classification scheme to narrow

‘‘semantic gap’’ systematically. In this article, we report a

novel technique called CVTagger based on advanced fea-

ture extraction scheme and a multilayer classification

framework to facilitate comprehensive tagging process

over large-scale video collection. Our system architecture

contains two basic modules—(1) video preprocessing

module and (2) hierarchical concept profiling module—an

advanced classification framework with layering structure.

Using a large video test collection, a set of comprehensive

empirical studies have been carried out to experimentally

compare our approach with other competitors. The exper-

imental results have shown that this method gives signifi-

cant improvement in different aspects.

The current study opens up a few interesting avenues

for further investigation. In CVTagger, the training

examples are selected via manual process, which could be

very expensive in terms of time and domain knowledge. It

is very promising to design and develop automatic

scheme to support fast and effective training example

selection. Further, we plan to develop more advanced

method to calculate video content signature and evaluate

its performance when being applied to large scale video

tagging.
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