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ABSTRACT 
Existing question retrieval models work relatively well in finding 
similar questions in community-based question answering (cQA) 
services. However, they are designed for single-sentence queries 
or bag-of-word representations, and are not sufficient to handle 
multi-sentence questions complemented with various contexts. 
Segmenting questions into parts that are topically related could 
assist the retrieval system to not only better understand the user’s 
different information needs but also fetch the most appropriate 
fragments of questions and answers in cQA archive that are 
relevant to user’s query. In this paper, we propose a graph based 
approach to segmenting multi-sentence questions. The results 
from user studies show that our segmentation model outperforms 
traditional systems in question segmentation by over 30% in 
user’s satisfaction. We incorporate the segmentation model into 
existing cQA question retrieval framework for more targeted 
question matching, and the empirical evaluation results 
demonstrate that the segmentation boosts the question retrieval 
performance by up to 12.93% in Mean Average Precision and 
11.72% in Top One Precision. Our model comes with a 
comprehensive question detector equipped with both lexical and 
syntactic features. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Retrieval Models; I.2.7 [Artificial Intelligence]: 
Natural Language Processing – Text Analysis 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Question Answering, Question Segmentation, Question Matching, 
Yahoo! Answers  

1. INTRODUCTION 
Community-based Question Answering (cQA) services begin 

to emerge with the blooming of Web 2.0. They bring together a 

network of self-declared “experts” to answer questions posted by 
other people. Examples of these services include Yahoo! Answers 
(answers.yahoo.com) and Baidu Zhidao (zhidao.baidu.com) etc. 
Over times, a tremendous amount of historical QA pairs have 
been built up in their databases, and this transformation gives 
information seekers a great alternative to web search [2,18,19]. 
Instead of looking through a list of potentially relevant documents 
from the Web, users may directly search for relevant historical 
questions from cQA archives. As a result, the corresponding best 
answer could be explicitly extracted and returned. In view of the 
above, traditional information retrieval tasks like TREC [1] QA 
are transformed to similar question matching tasks [18,19]. 

There has been a host of work on question retrieval. The state-
of-the-art retrieval systems employ different models to perform 
the search, including vector space model [5], language model 
[5,7], Okapi model [7], translation model [7,14,19] and the 
recently proposed syntactic tree matching model [18]. Although 
the experimental studies in these works show that the proposed 
models are capable of improving question retrieval performance, 
they are not well designed to handle questions in the form of 
multiple sub-questions complemented with sentences elaborating 
the context of the sub-questions. This limitation could be further 
viewed from two aspects. From the viewpoint of user query, the 
input to most existing models is simply a bag of keywords [5,19] 
or a single-sentence question [18]. It leads to a bottleneck in 
understanding the user’s different information needs when the 
user query is represented in a complex form with many sub-
questions. From the viewpoint of the archived questions, none of 
the existing work attempts to distinguish context sentences from 
question sentences, or tries to segment the archived question 
thread into parts that are topically based. It prevents the system 
from presenting the user the most appropriate fragments that are 
relevant to his/her queries.  

Figure 1 illustrates an example of a question thread extracted 
from Yahoo! Answers. There are three sub-questions (Q1, Q2 and 
Q3) asked in this thread, all in different aspects. If a user posts 
such example as a query, it is hard for existing retrieval systems 
to find all matches for the three sub-questions if the query is not 
well segmented. On the other hand, if a new similar query such as 
“what are the requirements of being a dentist?” is posted, it is 
also difficult for existing retrieval systems to return Q3 as a valid 
match if Q3 is not explicitly separated from its surrounding sub-
questions and contexts. Given all these constraints, it is thus 
highly valuable and desirable to topically segment multi-sentence 
questions, and to properly align individual sub-questions with 
their context sentences. Good segmentation not only helps the 
question retrieval system to better analyze the user’s complex 
information needs, but also assists it in matching the query with 
the most appropriate portions of the questions in the cQA archive. 
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Figure 1: Example of multi-sentence questions extracted from 

Yahoo! Answers 

It appears to be natural to exploit traditional text-based 
segmentation techniques to segment multi-sentence questions. 
Existing approaches to text segment boundary detection include 
similarity based method [3], graph based method [13], lexical 
chain based method [10], text tiling algorithm [6] and the topic 
change detection method [12] etc. Although experimental results 
of these segmentation techniques are shown to be encouraging, 
they mainly focus on general text relations and are incapable of 
modeling the relationships between questions and contexts. A 
question thread from cQA usually comes with multiple sub-
questions and contexts, and it is desirable for one sub-question to 
be isolated from other sub-questions while closely linked to its 
context sentences. 

After extensive study of the characteristics of questions in cQA 
archive, we introduce in this paper a new graph based approach to 
segment multi-sentence questions. The basic idea is outlined as 
follows. We first attempt to detect question sentences using a 
classifier built from both lexical and syntactic features, and use 
similarity and co-reference chain based methods to measure the 
closeness score between the question and context sentences. We 
model their relationships to form a graph, and use the graph to 
propagate the closeness scores. The closeness scores are finally 
utilized to group topically related question and context sentences. 

The contributions of this paper are threefold: First, we build a 
question detector on top of both lexical and syntactic features. 
Second, we propose an unsupervised graph based approach for 
multi-sentence segmentation. Finally, we introduce a novel 
retrieval framework incorporating question segmentation for 
better question retrieval in cQA archives. 

The rest of the paper is organized as follows: Section 2 presents 
the proposed technique for question sentence detection. Section 3 
describes the detailed algorithm and architecture for multi-
sentence segmentation, together with the new segmentation aided 
retrieval framework. Section 4 presents our experimental results. 
Section 5 reviews some related works and Section 6 concludes 
this paper with directions for future work. 

2. QESTION SENTENCE DETECTION 
Human generated content on the Web are usually informal, and 

it is not uncommon that standard features such as question mark 
or utterance are absent in cQA questions. For example, question 
mark might be used in cases other than questions (e.g. denoting 
uncertainty), or could be overlooked after a question. Therefore, 
traditional methods using certain heuristics or hand-crafted rules 
become inadequate to cope with various online question forms. 
To overcome these obstacles, we propose an automated approach 
to extracting salient sequential and syntactic patterns from 
question sentences, and use these patterns as features to build a 
question detector. Research on sequential patterns has been well 
discussed in many literatures, including the identification of 

comparative sentences [9], the detection of erroneous sentences 
[17] and question sentences [4]. However, works on syntactic 
patterns have only been partially explored [17,18]. Grounded on 
these previous works, we next explain our pattern mining process, 
together with the learning algorithm for the classification model. 

2.1 Sequential Pattern Mining 
Sequential Pattern is also referred to as Labeled Sequential 

Pattern (LSP) in the literatures. It is in the form of CS  , where 
S is a sequence <t1,…,tn>, and C is the class label that the 
sequence S is classified to. In the problem of question detection, a 
sequence is defined to be a series of tokens from sentences, and 
the class is in the binary form of {Q, NQ} (resp. question and 
non-question). The purpose of sequential pattern mining is to 
extract a set of frequent subsequence of words that are indicative 
of questions. For example, the word sequence “anyone know what 
… to” is a good indication to characterize the question sentence 
“anyone know what I can do to make me less tired”. Note that the 
mined sequential tokens need not to be contiguous as appeared in 
the original text. 

There is a handful of algorithms available to find all frequent 
subsequences, and the Prefixspan algorithm [11] is reported to be 
efficient in discovering all relative frequents by using a pattern 
growth method. We adopt this algorithm in our work by imposing 
the following additional constraints: 
1) Maximum Pattern Length: We limit the maximum number of 

tokens in a mined sequence to 5. 
2) Maximum Token Distance: The two adjacent tokens tn and 

tn+1 in the pattern need to be within a threshold window in the 
original text. We set it to 6. 

3) Minimum Support: We set the minimum percentage of 
sentences in database D containing the pattern p to 0.45%. 

4) Minimum Confidence: We set the probability of the pattern p 
being true in database D to 70%. 

To overcome the sparseness problem, we generalize the tokens 
by applying Part-of-Speech (POS) taggers to all tokens except 
some keywords including 5W1H words, modal words, stop words 
and the most frequent occurring words mind from cQA such as 
“any1”, “im”, “whats” etc. For example, the pattern <any1, know, 
what> will be converted to <any1, VB, what>. Each generalized 
pattern makes up a binary feature for the classification model as 
we will introduce in Section 2.3. 

2.2 Syntactic Shallow Pattern Mining 
We found that sequential patterns at the lexical level might not 

always be adequate to categorize questions. For example, the 
lexical pattern <when, do> presumes the non-question “Levator 
scapulae is used when you do the traps workout” to be a question, 
and the question “know someone with an eating disorder?” could 
be missed out due to the lack of indicative lexical patterns. These 
limitations, however, could be alleviated by syntactic features. 
The tree pattern (SBAR(WHADVP(WRB))(S(NP)(VP))) extracted 
from the former example has the order of NP and VP being 
switched, which might indicate the sentence to be a non-question, 
whereas the tree pattern (VP(VB)(NP(NP)(PP))) may be evidence 
that the latter example is indeed a question, because this pattern is 
commonly observed in the archived questions.  

Syntactic patterns have been partially explored in erroneous 
sentence detection [17], in which all non-leaf nodes are flattened 
for frequent substructure extraction. The number of patterns to be 
explored, however, grows exponentially with the size of the tree, 
which we think is inefficient. The reason is that the syntactic 

C1: i heard somewhere that in order to become a dentist, you need certain 
hours of volunteering or shadowing. 

Q1: is that true? 

Q2: if it is, how many hours? 

C2: i have only a few hours of such activity… 

Q3: and can you write down other requirements that one would need to 
become a dentist 

C3: i know there are a lot of things but if you can write down as much as you 
can, that'd be a lot of help. 

C4: thanks 



pattern will become too specific if mining is extended to a very 
deep level, and nodes at certain levels do not carry much useful 
structural information favored by question detection (e.g., the 
production rules NP→DT•NN at the bottom level).  

For better efficiency, we focus only on certain portion of the 
parsing tree by limiting the depth of the sub-tree patterns to be 
within certain levels (e.g. 2 ≤ D ≤ 4). We further generalize each 
syntactic pattern by removing some nodes denoting modifiers, 
preposition phrases and conjunctions etc. For instance, the pattern 
SQ(MD)(NP(NN))(ADVP(RB))(VP(VP)(NP)(NP)) extracted from 
the question “can someone also give me any advice?'' could be 
generalized into SQ(MD)(NP(NN))(VP(VP)(NP)(NP)), where the 
redundant branch ADVP(RB) that represents the adverb “also” is 
pruned. The pattern extraction process is outlined in Algorithm 1. 
The overall pattern mining strategy is analogous to the mining of 
sequential patterns, where the measures including support and 
confidence are taken into consideration to control the significance 
of the mined patterns. The discovered patterns are used together 
with the sequential patterns as features for the learning of 
classification model. 

Algorithm 1 ExtractPattern (S , D) 
Input: A set of syntactic trees for sentences (S); the depth range (D) 
Output: A set of sub-tree shallow patterns extracted from S 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

Patterns = {}; 
for all Syntactic tree T ∈ S do 
    Nodes ← level order traversal of T from top to bottom; 
    for all node n ∈ Nodes do 
        Extract subtree p rooted under node n, with depth within the range D; 
        p ← generalize (p);        // remove modifier nodes etc. 
        Patterns.add (p);            // add p as a candidate 
    end for        
end for 
return Patterns; 

2.3 Model Learning  
The input to an algorithm that learns a binary classifier consists 

normally of both positive and negative examples. While it is easy 
to discover certain patterns from questions, it becomes unnatural 
to identify characteristics for non-questions. The imbalanced data 
distribution leads normal classifiers to perform poorly on the 
model learning. To address this issue, we propose to learn with 
the one-class SVM method. One-class SVM is built on top of the 
standard two-class SVM method, and its basic idea is to transform 
features from only positive examples via a kernel to a hyper-
plane, and treats the origin as the only member of the negative 
class. It further uses relaxation parameters to separate the image 
of positive class from the origin, and finally applies the standard 
two-class SVM techniques to learn a decision boundary. As a 
result, data points outside the boundary are considered to be 
outliers, i.e. non-questions in our problem.  

The training data as used by traditional supervised learning 
methods usually require human labelling, which is not cheap. To 
save human efforts on data annotation, we take a shortcut by 
assuming all questions ending with question marks as an initial set 
of positive examples. This assumption is acceptable, as according 
to the results reported in [4], the rule-based method using only 
question mark achieves a very high precision (97%) in detecting 
questions. It in turn indicates that questions ending with “?” are 
highly likely to be real questions. To reduce the effect of possible 
outliers (e.g. non-questions ending with “?”), we need to purify 
the initial training set. There are many techniques available for 
training data refinement, such as bootstrapping, condensing, and 
editing. We choose a SVM-based data editing and classification 
method proposed by [15] to iteratively remove the samples likely 

to be outliers. The detail is not covered here as it is beyond the 
scope of this paper. 

For one-class SVM training, the linear kernel is used, as it is 
shown to outperform other kernel functions. In the iterations of 
training data refinement, the parameter ν that controls the upper 
bound percentage of outliers is set to 0.02. The question detector 
model learned ultimately serves as a component for the multi-
sentence question segmentation system.  

3. Multi-Sentence Question Segmentation 
Unlike traditional text segmentation, question segmentation 

ought to group each sub-question with its context sentences while 
separating it from the other sub-questions. Investigations show 
that the user posting styles in the online environment are largely 
unpredictable. While some users ask multiple questions in an 
interleaved manner, some prefer to list the whole description first 
and ask all sub-questions later. Therefore, naive methods such as 
using distance based metrics will be inadequate, and it is a great 
challenge to segment multi-sentence questions especially when 
the description sentences in various aspects are mixed together. 

In the remainder of this section, we present a novel graph-
based propagation method for segmenting multi-sentence 
questions. While the graph based method has been successfully 
applied in many applications like web search, to the best of our 
knowledge, this is the first attempt to apply it to the question 
segmentation problem. The intuition behind the use of graph 
propagation approach is that if two description sentences are 
closely related and one is the context of a question sentence, then 
the other is also likely to be its context. Likewise, if two question 
sentences are very close, then the context of one is also likely to 
be the context of the other. We next introduce the graph model of 
the multi-sentence question, followed by the sentence closeness 
score computation and the graph propagation mechanism. 

3.1 Building Graphs for Question Threads 
Given a question thread comprising multiple sentences, we 

represent each of its sentences as a vertex v. The question detector 
is then applied to divide sentences into question sentences and 
non-question sentences (contexts), forming a question sentence 
vertex set Vq and a context sentence vertex set Vc respectively. 

We model the question thread into a weighted graph (V, E) 
with a set of weight functions Ew : , where V is the set of 
vertices Vq∪Vc, E is the union of three edge sets Eq∪Ec∪Er, and 
w(E) is the weight associated with the edge E. The three edge sets 
Eq, Ec and Er are respectively defined as follows: 

- Eq: a set of directed edges u→v, where u, v ∈ Vq; 
- Ec : a set of directed edges u→v, where u, v ∈ Vc; 
- Er : a set of undirected edges u–v, where u ∈ Vq and v ∈ Vc. 
While the undirected edge indicates the symmetric closeness 

relationship between a question sentence and a context sentence, 
the directed edge captures the asymmetric relation between two 
question sentences or two context sentences. The intuition of 
introducing the asymmetry relationship could be explained with 
the example given in Figure 1. It is noticed that C1 is the context 
of the question sentence Q1 and C2 is the context of the question 
sentence Q2. Furthermore, Q2 is shown up to be motivated by Q1, 
but not in the opposite direction. This observation gives us the 
sense that C1 could also be the context of Q2, but not for C2 and 
Q1. We may reflect this asymmetric relationship using the graph 
model by assigning higher weight to the directed edge Q1→Q2 
than to Q2→Q1. As a result, the weight of the chain C1→Q1→Q2 
becomes much stronger than that of C2→Q2→Q1, indicating that 



C1 is related to Q2 but C2 is not related to Q1, which is consistent 
to our intuition. From another point of view, the asymmetry helps 
to regulate the direction of the closeness score propagation. 

We give two different weight functions for edges depending on 
whether they are directed or not. For the directed edge (u→v) in 
Eq and Ec, we consider the following factors in computing weight: 
1) KL-divergence: given two vertices u and v, we construct the 

unigram language models Mu and Mv for the sentences they 
represent, and use KL-divergence to measure the difference 
between the probability distributions of Mu and Mv. We use 
DKL(Mu||Mv) to model the connectivity from u to v: 

 w
v

u
uvuKL Mwp

Mwp
MwpMMD

)|(

)|(
log)|()||(       (1) 

Generally, the smaller the divergence value, the stronger the 
connectivity, and the value of DKL(Mu||Mv) is usually unequal 
to DKL(Mv||Mu), thereby representing the asymmetry. 

2) Coherence: it is observed that the subsequence sentences are 
usually motivated by the earlier sentences. Given two vertices 
u, v, we say that v is motivated by u (or u motivates v) if v 
comes after u in the original post, and there are conjunction or 
linking words connecting in-between. The coherence score 
from u to v is determined as follows: 






otherwise

uby  motivated is v if
uvCoh

0

1
)|(        (2) 

3) Coreference: coreference commonly occurs when multiple 
expressions in a sentence or multiple sentences have the same 
referent. We observe that sentences having the same referent 
are somehow connected, and the more the referents two 
sentences share, the stronger the connection. We perform the 
coreference resolution on a question thread, and measure the 
coreference score from vertex u to vertex v as follows: 





 



otherwise

u after comes v ife
uvRef

vureferent

0

,1
)|(

|}{|
         (3) 

Note that all the metrics introduced above are asymmetric, 
meaning that the measure from u to v is not necessarily the same 
as that from v to u. Given two vertices u, v ∈ Eq or Ec, the weight 
of the edge u→v is computed by a linear interpolation of the three 
factors as follows: 

)|()|(
)||(1

1
)( 3211 uvRefuvCoh

MMD
vuw

vuKL

 


    

where 1,,0 321   .          (4) 

Since DKL(Mv||Mu) ≥ 0, 0 ≤ Coh(v|u) ≤ 1, and 0 ≤ Ref(v|u) ≤ 1, 
the interval range of w1(u→v) is between 0 to 1, and we do not 
need to apply normalization on this weight. We employed grid 
search with 0.05 stepping space in our experiments and found that 
the combination of {α1 = 0.4, α2 = 0.25, α3 = 0.35} gives the most 
satisfactory results. 

While the weight of the directed edges in Eq and Ec measures 
the throughput of the score propagation from one to another, the 
weight of the undirected edge (u–v) in Er demonstrates the true 
closeness between a question and a context sentence. We consider 
the following factors in computing the weight for edges in Er : 
1) Cosine Similarity: given a question vertex u and a context 

vertex v, we measure their cosine similarity weighted by the 
word inverse document frequency (idfw) as follows: 













vw wvuw wu

vuw wvu

idfwfidfwf

idfwfwf
vuSim

22

,
2

))(())((

)()()(
),(  (5) 

where fu(w) is the frequency of word w in sentence u, idfw is 
the inverse document frequency (# of posts containing w). We 
do not employ KL-divergence as we believe that the similarity 
between question and context sentences is symmetric. 

2) Distance: questions and contexts separated far away are less 
likely to be relevant as compared to neighboring pairs. Hence, 
we take the following distance factor into account: 

),(),( vuevuDis           (6) 

where ),( vu is proportional to the number of sentences 
between u and v in the original post. 

3) Coherence: the coherence between a question and a context 
sentence is also important, and we take it into account with 
the exception that the order of appearance is not considered: 






otherwise

 wordsnconjunctioby  linked if
vuCoh

0

1
),(       (7) 

4) Coreference: similarly, it measures the number of the same 
referents in the question and context, without considering their 
ordering: 

|}{|1),( vureferentevuRef               (8) 
The final weight of the undirected edge (u–v) is computed by a 

linear interpolation of the abovementioned factors: 
),(),(),(),()( 43212 vuRefvuCohvuDisvuSimvuw    

where 1,,,0 4321            (9) 

The combination of {β1 = 0.4, β2 = 0.1, β3 = 0.3, β3 = 0.2} 
produces best results with grid search. Note that normalization is 
not required as each factor is valued between 0 and 1. With the 
weight of each edge defined, we next introduce the propagation 
mechanism of the edge scores. 

3.2 Propagating the Closeness Scores 
For each pair of vertices, we assign the initial closeness score 

to be the weight of the edge in-between using the weight function 
introduced in Section 3.1, depending on whether the edge is in Eq, 
Ec or Er. Note that if the edge weight is very low, two sentences 
might not be closely related. For fast processing, we use a weight 
threshold θ to prune edges with weight below θ. The parameter θ 
is empirically determined, and we found in our experiments that 
the results are not very sensitive to θ value below 0.15. 

Algorithm 2 MapPropagation (G(V,E)) 
Input: The map model with initial scores assigned to every edge 
Output: The map with updated closeness scores between questions and contexts 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15:  

for every context c∈Vc  and every question q∈Vq do   // initialization 
w(q,c) = w2(q,c); 

end for 
while score is not converged do 

for every context c∈Vc  and question q∈Vq do  // propagate from c to q 
    w’(q,c) = MAXqi∈ Vq { λw(qi,c)w1(qi→q) } 
    if (w(q,c) < w’(q,c)) 
        w(q,c) = w’(q,c) 
end for 
for every question q∈Vq and context c∈Vc  do  // propagate from q to c 
    w’(c,q) = MAXci∈ Vc { λw(ci,q)w1(ci→c) } 
    if (w(c,q) < w’(c,q)) 
        w(c,q) = w’(c,q) 
end for 

end while 

With the initial closeness scores, we carry out the score 
propagation using the algorithm outlined in Algorithm 2. The 
basic idea of this propagation algorithm is that, given a question 
sentence q and a context sentence c, if there is an intermediate 
question sentence qi such that the edge weight w1(qi→q), together 
with the closeness score w(qi,c) between qi and c, are both 



relatively high, then the closeness score w(q,c) between q and c 
could be updated to λw1(qi→q)w(qi,c) in case the original score is 
lower than that. In other words, qi becomes the evidence that q 
and c are related. The propagation algorithm works similarly in 
propagating scores from question sentences to context sentences, 
where an intermediate context ci could be the evidence that c and 
q are related. Notice that the direction of propagation is not 
arbitrary. For example, it makes no sense if we propagate the 
score along the path of c→ci→q, because ci is simply the receiver 
of c, which could not be the evidence that a question and a 
context are correlated. When considering a pair of q and c, the 
possible directions of propagation are illustrated in Figure 2, in 
which the dashed lines indicate invalid propagation paths. 

 

Figure 2: Illustration of the direction of score propagation  

The damping factor λ in the algorithm controls the transitivity 
among nodes. In some circumstances, the propagated closeness 
score might not indicate the true relatedness between two nodes, 
especially when the score is propagated through an extremely 
long chain. For example, {ABC} is close to {BCD}, {BCD} is 
close to {CDE}, and {CDE} is close to {DEF}. The propagation 
chain could infer {ABC} to be related to {DEF}, which is not 
true. The introduction of damping factor λ can leverage this 
propagation issue by penalizing the closeness score when the 
chain becomes longer. We empirically set λ to 0.88 in this work.  

The propagation of the closeness score will eventually 
converge. This is controlled by our propagation principle that the 
updated closeness score is a multiplication of two edge weights 
whose value is defined to fall between 0 and 1. Hence the score is 
always upper bounded by the maximum weight of the edges in E. 

After the propagation reaches the stationary condition, we need 
to extract all salient edges in Er for the alignment of questions and 
contexts. One straightforward method is to pre-define a threshold 
ψ, and remove all edges weighted under ψ. However, this method 
is not very adaptive, as the edge weights vary greatly for different 
questions and a pre-defined threshold is not capable to regulate 
the appropriate number of alignments between questions and 
contexts. In this work, we take a dynamical approach instead: we 
first sort edges in Er by the closeness score and extract them one 
by one in descending order <e1, e2, … , en>. The extraction 
process terminates at em when one of the following criteria is met: 

1. )
1

(
11 m

m
i imm ewew

m
 ewew     , where ewi is the i-th 

edge weight in the order and ω is the control parameter. 
2. ewm+1 < η , where η is a pre-defined threshold controlling the 

overall connection quality (we set it to 0.05). 
3. m = n, meaning all edges have been extracted out from Er. 

When the extraction procedure terminates, the extracted edge 
set {e1,…,em} represents the final alignment between questions 
and contexts. For each edge ei connecting between a context c and 
a question q, c will be considered as the context to question q, and 
they belong to the same question segment. For example, a final 

edge set {(q1,c1), (q2,c2), (q1,c2), (q2,c4), (q3,c1), (q2,c3)} produces 
three question segments: (q1 – c1,c2), (q2 – c2,c3,c4) and (q3 – c1). 
Note that the segmentation works in a fuzzy way such that no 
explicit boundaries are defined between sentences. Instead, a 
question could have multiple context sentences, whereas a context 
sentence does not necessarily belong to only one question. 

3.3 Segmentation-aided Retrieval 
By applying segmentation on the multi-sentence questions from 
cQA, sub-questions and their corresponding contexts that are 
topically related could be grouped. Figure 3 shows an improved 
retrieval framework with segmentation integrated. Different from 
existing models, the question matcher matches two question 
sentences with the assistance of additional related contexts such 
that the users’ query can be matched with the archived cQA 
questions more precisely. More specifically, the user query is no 
longer restricted to a short single-sentence question, but can be in 
the form of multiple sub-questions complemented with many 
description sentences. An archived question thread asking in 
various aspects could also be indexed into different question-
context pairs such that the matching is performed on the basis of 
each question-context pair.  

 

Figure 3: Retrieval framework with question segmentations 

4. EXPERIMENTS 
In this section, we present empirical evaluation results to assess 

the effectiveness of our question detection model and multi-
sentence segmentation technique. In particular, we conduct 
experiments on the Yahoo! Answers QA archive and show that 
our question detection model outperforms traditional rule based or 
lexical based methods. We further show that our segmentation 
model works more effectively than conventional text 
segmentation techniques in segmenting multi-sentence questions, 
and it gives additional performance boosting to cQA question 
matching. 

4.1 Evaluation of Question Detection 
Dataset: We issued getByCategory API query to Yahoo! 

Answers, and collected a total of around 0.8 million question 
threads from Healthcare domain. From the collected data, we 
generate the following three datasets for the experiments: 
- Pattern Mining Set: Around 350k sentences extracted from 60k 

question threads are used for lexical and syntactic pattern 
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mining, where those ending with “?” are treated as question 
sentences and the others as non-question sentences1.  

- Training Set: Around 130k sentences ending with “?” from 
another 60k question threads are used as the initial positive 
examples for one-class SVM learning method.  

- Testing Set: Two annotators are asked to tag some randomly 
picked sentences from a third post set. A total of 2004 question 
sentences and 2039 non-question sentences are annotated. 
Method: To evaluate the performance of our question 

detection model, we use five different systems for comparison: 
1) 5W1H (baseline1): a rule based method determines that a 

sentence is a question if it contains 5W1H words. 
2) Question Mark (baseline2): a rule based method judges that a 

sentence is a question if it ends with the question mark “?”. 
3) SeqPattern: Using only sequential patterns as features.  
4) SynPattern: Using only syntactic patterns as features.  
5) SeqPattern+SynPattern: Using both sequential patterns and 

syntactic patterns as features for question sentence detection.  
A grid search algorithm is performed to find the optimal number 
of features used for model training, and a set of 1314 sequential 
patterns and 580 syntactic patterns are shown to give the best 
performance. Table 1 illustrates some pattern examples mined.  

Table 1: Examples for sequential and syntactic patterns 

Pattern Type Pattern Example 

Sequential Pattern 
< anyone VB NN > < what NN to VB NN > 
< NNS should I > < can VB my NN> 
< JJS NN to VB > … 

Syntactic Pattern 
(SBARQ (CC)(WHADVP (WRB))(SQ (VBP)(NP)(VP))) 
(SQ (VBZ)(NP (DT))(NP (DT)(JJ)(NN))) 
(VP (VBG)(S (VP))) … 

Metrics & Results: We employ Precision, Recall, and F1 as 
metrics to evaluate the question detection performance. Table 2 
tabulates the comparison results. From the table, we observe that 
5W1H performs poorly in both precision and recall. Question 
mark based method gives the highest precision, but the recall is 
relatively low. This observation is in line with the reported results 
in [4]. On the other hand, SeqPattern gives relatively high recall 
and SynPattern gives relatively high precision. The combination 
of both augments the performance in both precision and recall by 
a lot, and it achieves statistically significant improvement (t-test, 
p-value<0.05) as compared to SeqPattern and SynPattern. We 
believe that the improvement stems from the ability of the 
detection model to capture the salient characteristics in questions 
at both the lexical and syntactic levels. The results are also 
consistent with our intuition that sequential patterns could 
misclassify a non-question to a question, but syntactic patterns 
may leverage it to certain extent. It is noted that our question 
detector exhibits a sufficiently high F1 score for its use in the 
multi-sentence question segmentation model in the later phase. 

Table 2: Performance comparisons for question detection on 
different system combinations 

System Combination Precision (%) Recall (%) F1(%)
(1) 5W1H 75.37 49.50 59.76
(2) Question Mark 94.12 77.50 85.00
(3) SeqPattern 88.92 88.47 88.69
(4) SynPattern 90.06 78.19 83.71
(5) SeqPattern+SynPattern 92.11 89.67 90.87

                                                                 
1 This is acceptable for a large dataset, as a question ending with “?” is 

claimed to have high precision to be a true question. 

4.2 Direct Assessment of Multi-Sentence 
Question Segmentation via User Study  

We first evaluate the effectiveness of our multi-sentence 
question segmentation model (denoted as MQSeg) via a direct 
user study. We set up two baselines using the traditional text 
segmentation techniques for comparison. The first baseline 
(denoted as C99) employs the C99 algorithm [4], which uses a 
similarity matrix to generate a local sentence classifier so as to 
isolate topical segments. The second baseline (denoted as 
TransitZone) is built on top of the method proposed in [12]. It 
measures the thematic distance between sentences to determine a 
series of transition zones, and uses them to locate the boundary 
sentences. To conduct the user study, we generate a small dataset 
by randomly sampling 200 question threads from the collected 
data. We run the three segmentation systems for each question 
thread, and present the segmentation results to two evaluators 
without telling them from which system the result was generated. 
The evaluators are then asked to rate the segmentation results 
using a score from 0 to 5 with respect to their satisfaction. Figure 
4 shows the score distributions from the evaluators for three 
different segmentation systems. We can see from Figure 4 that 
users give relatively moderate scores (avg. 2 to 3) to the results 
returned by two baseline systems, whereas they seem to be more 
satisfied with the results given by MQSeg. The score distribution 
in MQSeg largely shifts towards high end as compared to the two 
baseline systems. The average rating scores for three different 
systems are 2.63, 2.74, and 3.6 respectively. We consider two 
evaluators to be agreeable to the segmentation result if their score 
difference does not exceed 1, and the average level of peer 
agreement obtained between the two evaluators is 93.5%. 
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Figure 4: Score distribution of user evaluation for 3 systems 

It is to our expectation that MQSeg performs better than C99 or 
TransitZone segmentation systems. One straightforward reason is 
that MQSeg is specifically designed to segment multi-sentence 
questions, whereas the traditional systems are designed for 
generic purpose and do not distinguish question sentences from 
contexts. While the conventional systems fail to capture the 
relationship between questions and their contexts, our system 
aligns the questions and contexts in a fuzzy way that one context 
sentence could belong to different question segments. As online 
content is usually freely posted and does not strictly adhere to the 
formal format, we believe that our fuzzy grouping mechanism is 
more suitable to correlate sub-questions with their contexts, 
especially when there is no obvious sign of association. 

4.3 Performance Evaluation on Question 
Retrieval with Segmentation Model 

In cQA, either archived questions or user queries could be in 
the form of a mixture of question and description sentences. To 
further evaluate our segmentation model and to show that it can 
improve question retrieval, we set up question retrieval systems 
coupled with segmentation modules for either question repository 
or user query. 



Methods: We select BoW, a simple bag-of-word retrieval 
system that matches stemmed words between the query and 
questions, and STM, a syntactic tree matching retrieval model 
proposed in [18] as two baseline systems for question retrieval. 
For each baseline, we further set up three different combinations:  
1) Baseline+RS: a baseline retrieval system integrated with 

question repository segmentation.  
2) Baseline+QS: a baseline retrieval system equipped with user 

query segmentation. 
3) Baseline+RS+QS: the retrieval system with segmentations for 

both repository questions and user queries. 
It gives rise to a total of 6 different combinations of methods for 
comparison. 

Dataset: We divide the collected 0.8 million question dataset 
from Yahoo! Answers into two parts. The first part (0.75M) is 
used as a question repository, while the remaining part (0.05M) is 
used as a test set. For data preprocessing, systems coupled with 
RS will segment and index each question thread in the repository 
accordingly, whereas systems without RS simply performs basic 
sentence indexing tasks. From the test set, we randomly select 
250 sample questions, each of which is in the form of one single-
sentence question with some context sentences. The reason that 
we do not take queries of multi sub-questions as test cases is that 
traditional cQA question retrieval systems cannot handle complex 
queries, making it impossible to conduct the comparison test. 
Nevertheless, it is sufficient to use single-question queries here as 
our purpose is to testify that the context extracted by the 
segmentation model could help question matching.  

For systems equipped with user query segmentation (QS), we 
simply use the testing samples as they are, whereas for systems 
without QS, we manually extract the question sentences from the 
samples and use them as queries without their corresponding 
context sentences. For each retrieval system, the top 10 retrieval 
results are kept. For each query, we combine the retrieval results 
from different systems, and ask two annotators to label each result 
to be either “relevant” or “irrelevant” without telling them from 
which system the result is generated. The kappa statistic for 
identifying relevance between two evaluators is reported to be 
0.73. A third person will be involved if conflicts happen. By 
eliminating some queries that have no relevant matches, the final 
testing set contains 214 query questions. 

Table 3: Performance of different systems measured by MAP, 
MRR, and P@1 (%chg shows the improvement as compared 
to BoW or STM baselines. All measures achieve statistically 
significant improvement with t-test, p-value<0.05) 

Systems MAP %chg MRR %chg P@1 %chg
BoW 0.5807 – 0.7138 – 0.5981 –
BoW+RS 0.6389 10.02 0.7565 5.98 0.6542 9.38
BoW+QS 0.6245 7.54 0.7429 4.07 0.6355 6.25
BoW+RS+QS 0.6558 12.93 0.7690 7.73 0.6682 11.72

STM 0.6653 – 0.7429 – 0.6308 –
STM+RS 0.7310 9.88 0.7774 4.64 0.6776 7.41
STM+QS 0.7238 8.79 0.7893 6.24 0.6916 9.63
STM+RS+QS 0.7415 11.45 0.7984 7.46 0.7009 11.11

Metrics & Results: We evaluate the performance of retrieval 
systems using three metrics: Mean Average Precision (MAP), 
Mean Reciprocal Rank (MRR), and Precision at Top One (P@1). 
The evaluation results are presented in Table 3.  

We can see from Table 3 that STM consistently outperforms 
BoW. Applying question repository segmentation (RS) over both 
BoW and STM baselines boosts system performance by a lot. All 

RS coupled systems achieve statistically significant improvement 
in terms of MAP, MRR and P@1. We believe that the 
improvement stems from the ability of the segmentation module 
to eliminate irrelevant content that is favored by traditional BoW 
or STM approaches. Take the query question “What can I eat to 
put on weight?” as an example, traditional approaches may match 
it to an irrelevant question “I’m wearing braces now. what am I 
allowed to eat?” due to their high similarity on the questioning 
part. The mismatch however, could be alleviated if repository 
segmentation gets involved, where the context sentence can give 
clear clue that the above archived sentence is not relevant to the 
user query. 

Performing user query segmentation (QS) on top of baseline 
systems also brings in large improvements in all metrics. This 
result is in line with our expectation. The introduction of QS is 
based on the intuition that contexts could complement questions 
with additional information, which help the retrieval system to 
better understand the user’s information need. For example, given 
an example question from our testing set “Questions about root 
canal?”, it makes no sense for retrieval systems to find its related 
questions if the context is absent, because there could be hundreds 
of irrelevant questions in the QA archive as long as they are 
concerned about “root canal”.  

Interestingly, STM+QS gives more improvement over STM as 
compared to BoW+QS over BoW. Our reading is that, BoW is 
less sensitive to the query context as compared to STM. To be 
more specific, the query context provides information at the 
lexical level, and BoW handles bad-of-word queries at the lexical 
level, whereas STM matches questions at the syntactic level. As 
such, it is reasonable that matching at both lexical and syntactic 
levels (STM+QS) gives more performance boosting as compared 
to only at lexical level (BoW+QS). Similar interpretation could be 
applied to explain the finding that BoW+RS system gives more 
significant improvement over BoW as compared to BoW+QS. 
Furthermore, we conjecture that, without RS, BoW is likely to 
match the query with some context sentences, whereas having 
question repository properly segmented overcomes this issue to a 
large extent.  

Lastly, the combination of both RS and QS brings in significant 
improvement over the other methods in all metrics. The MAP on 
systems integrated with RS and QS improves by 12.93% and 
11.45% respectively over BoW and STM baselines. RS+QS 
embedded systems also yield better top one precision by correctly 
retrieving questions at the first position on 143 and 150 questions 
respectively, out of a total of 214 questions. These significant 
improvements are consistent to our observations that RS and QS 
complement each other in not only better analyzing the user’s 
information need but also organizing the question repository more 
systematically for efficient question retrieval. 

Error Analysis: Although we have shown that RS together 
with QS improves question retrieval, there is still plenty of room 
for improvement. We perform micro-level error analysis and 
found that the segmentation sometimes fails to boost retrieval 
performance mainly for the following three reasons: 
1) Question detection error: The performance of question 

segmentation highly depends on the reliability of the question 
detector. Although we have shown that the performance of our 
question detection model is very competitive, the noisy online 
environment still leads many questions to be miss-detected. 
Examples are the question in abbreviated form such as “signs 
of a concussion?” and the question in declarative form such as 
“I'm going through some serious insomniac issues?” etc.  



2) Closeness gaps: The true closeness score between sentences is 
relatively hard to measure. For simplicity and efficiency, the 
relatedness measure in this work is more at the lexical level, 
and the only semantic factor we have taken is coreference 
resolution. These measures may become insufficient when the 
sentences grow in complexity, especially when there is a lack 
of lexical evidence (e.g. cue words or phrases etc.) indicative 
of the connection between two sentences. This is a difficult 
challenge, and a good strategy may be to apply more 
advanced NLP techniques or semantic measures.  

3) Propagation errors: The propagated closeness score could be 
unreliable even when the propagation chain is short. Given 
three questions “is it expensive to see a dentist instead?” (Q1), 
“if it is not, how long it takes to get my teeth whitened?” (Q2), 
and “How many ways to get my teeth whitened?” (Q3), Q1 is 
considered to be the predecessor of Q2, and Q3 is closed to Q2, 
but the linkage between Q1 and Q3 is so weak that assigning 
the context of Q1 to Q3 becomes inappropriate. We conjecture 
that selecting the damping factor λ in a more dynamic way 
(e.g. associating λ with the actual question) could help to 
adjust the propagation trend. We leave it to our future work. 

5. RELATED WORK 
There have been many literature works in the direction of 

question retrieval, and these works could generally be classified 
into two genres: the early FAQ retrievals and the recent cQA 
retrievals. Among FAQ related works, many retrieval models 
have been proposed, including the conventional vector space 
model [8], noisy channel model [16], and translation based model 
[14] etc. Most of these works tried to extract a large number of 
FAQ pairs from the Web, and use the FAQs dataset to do training 
and retrieval. 

The cQA archive is different from FAQ collections in the sense 
that the content of cQA archive is much noisier and the scope is 
much wider. The state-of-the-art cQA question retrieval systems 
also employ different models to perform the search, including the 
vector space model [5], language model [5,7], Okapi model [7], 
and translation model [7,14,19] etc. Claiming that purely lexical 
level models are not adequate to cope with natural languages, 
Wang et al. [18] proposed a syntactic tree matching model to rank 
historical questions. 

However, all these previous works handle bag-of-words queries 
or single-sentence questions only. On the contrary, we take a new 
approach by introducing a question segmentation module, where 
the enhanced retrieval system is capable of segmenting a multi-
sentence question into parts that are topically related and perform 
better question matching thereafter. To the best of our knowledge, 
no previous work has attempted to look into this direction, or use 
question segmentation to improve the question search. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a new segmentation approach 

for segmenting multi-sentence questions. It separates question 
sentences from non-question sentences and aligns them according 
to their closeness scores as derived from the graph based model. 
The user study showed that our system produces more satisfactory 
results as compared to the traditional text segmentation systems. 
Experiments conducted on the cQA question retrieval systems 
further demonstrated that segmentation significantly boosts the 
performance of question matching. 

Our qualitative error analysis revealed that the segmentation 
model could be improved by incorporating a more robust question 

detector, together with more advanced semantic measures. One 
promising direction for future work would be to also analyze the 
answers to help question segmentation. This is because answers 
are usually inspired by questions, where certain answer patterns 
could be helpful to predict the linkage between question and 
context sentences. The segmentation system in this work takes all 
noisy contexts as they are, without further analysis. The model 
could be further improved by extracting the most significant 
content and align them with question sentences. Finally, it is 
important to evaluate the efficiency of our proposed approach as 
well as to conduct additional empirical studies of the performance 
of question search with segmentation model incorporated. 
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