
Segmentation of Multi-Sentence Questions: Towards
Effective Question Retrieval in cQA Services

Kai Wang, Zhao-Yan Ming, Xia Hu, Tat-Seng Chua
Department of Computer Science

School of Computing
National University of Singapore

{kwang, mingzy, huxia, chuats}@comp.nus.edu.sg

ABSTRACT
Existing question retrieval models work relatively well in finding
similar questions in community-based question answering (cQA)
services. However, they are designed for single-sentence queries
or bag-of-word representations, and are not sufficient to handle
multi-sentence questions complemented with various contexts.
Segmenting questions into parts that are topically related could
assist the retrieval system to not only better understand the user’s
different information needs but also fetch the most appropriate
fragments of questions and answers in cQA archive that are
relevant to user’s query. In this paper, we propose a graph based
approach to segmenting multi-sentence questions. The results
from user studies show that our segmentation model outperforms
traditional systems in question segmentation by over 30% in
user’s satisfaction. We incorporate the segmentation model into
existing cQA question retrieval framework for more targeted
question matching, and the empirical evaluation results
demonstrate that the segmentation boosts the question retrieval
performance by up to 12.93% in Mean Average Precision and
11.72% in Top One Precision. Our model comes with a
comprehensive question detector equipped with both lexical and
syntactic features.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Retrieval Models; I.2.7 [Artificial Intelligence]:
Natural Language Processing – Text Analysis

General Terms
Algorithms, Design, Experimentation

Keywords
Question Answering, Question Segmentation, Question Matching,
Yahoo! Answers

1. INTRODUCTION
Community-based Question Answering (cQA) services begin

to emerge with the blooming of Web 2.0. They bring together a

network of self-declared “experts” to answer questions posted by
other people. Examples of these services include Yahoo! Answers
(answers.yahoo.com) and Baidu Zhidao (zhidao.baidu.com) etc.
Over times, a tremendous amount of historical QA pairs have
been built up in their databases, and this transformation gives
information seekers a great alternative to web search [2,18,19].
Instead of looking through a list of potentially relevant documents
from the Web, users may directly search for relevant historical
questions from cQA archives. As a result, the corresponding best
answer could be explicitly extracted and returned. In view of the
above, traditional information retrieval tasks like TREC [1] QA
are transformed to similar question matching tasks [18,19].

There has been a host of work on question retrieval. The state-
of-the-art retrieval systems employ different models to perform
the search, including vector space model [5], language model
[5,7], Okapi model [7], translation model [7,14,19] and the
recently proposed syntactic tree matching model [18]. Although
the experimental studies in these works show that the proposed
models are capable of improving question retrieval performance,
they are not well designed to handle questions in the form of
multiple sub-questions complemented with sentences elaborating
the context of the sub-questions. This limitation could be further
viewed from two aspects. From the viewpoint of user query, the
input to most existing models is simply a bag of keywords [5,19]
or a single-sentence question [18]. It leads to a bottleneck in
understanding the user’s different information needs when the
user query is represented in a complex form with many sub-
questions. From the viewpoint of the archived questions, none of
the existing work attempts to distinguish context sentences from
question sentences, or tries to segment the archived question
thread into parts that are topically based. It prevents the system
from presenting the user the most appropriate fragments that are
relevant to his/her queries.

Figure 1 illustrates an example of a question thread extracted
from Yahoo! Answers. There are three sub-questions (Q1, Q2 and
Q3) asked in this thread, all in different aspects. If a user posts
such example as a query, it is hard for existing retrieval systems
to find all matches for the three sub-questions if the query is not
well segmented. On the other hand, if a new similar query such as
“what are the requirements of being a dentist?” is posted, it is
also difficult for existing retrieval systems to return Q3 as a valid
match if Q3 is not explicitly separated from its surrounding sub-
questions and contexts. Given all these constraints, it is thus
highly valuable and desirable to topically segment multi-sentence
questions, and to properly align individual sub-questions with
their context sentences. Good segmentation not only helps the
question retrieval system to better analyze the user’s complex
information needs, but also assists it in matching the query with
the most appropriate portions of the questions in the cQA archive.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07...$10.00.

Figure 1: Example of multi-sentence questions extracted from

Yahoo! Answers

It appears to be natural to exploit traditional text-based
segmentation techniques to segment multi-sentence questions.
Existing approaches to text segment boundary detection include
similarity based method [3], graph based method [13], lexical
chain based method [10], text tiling algorithm [6] and the topic
change detection method [12] etc. Although experimental results
of these segmentation techniques are shown to be encouraging,
they mainly focus on general text relations and are incapable of
modeling the relationships between questions and contexts. A
question thread from cQA usually comes with multiple sub-
questions and contexts, and it is desirable for one sub-question to
be isolated from other sub-questions while closely linked to its
context sentences.

After extensive study of the characteristics of questions in cQA
archive, we introduce in this paper a new graph based approach to
segment multi-sentence questions. The basic idea is outlined as
follows. We first attempt to detect question sentences using a
classifier built from both lexical and syntactic features, and use
similarity and co-reference chain based methods to measure the
closeness score between the question and context sentences. We
model their relationships to form a graph, and use the graph to
propagate the closeness scores. The closeness scores are finally
utilized to group topically related question and context sentences.

The contributions of this paper are threefold: First, we build a
question detector on top of both lexical and syntactic features.
Second, we propose an unsupervised graph based approach for
multi-sentence segmentation. Finally, we introduce a novel
retrieval framework incorporating question segmentation for
better question retrieval in cQA archives.

The rest of the paper is organized as follows: Section 2 presents
the proposed technique for question sentence detection. Section 3
describes the detailed algorithm and architecture for multi-
sentence segmentation, together with the new segmentation aided
retrieval framework. Section 4 presents our experimental results.
Section 5 reviews some related works and Section 6 concludes
this paper with directions for future work.

2. QESTION SENTENCE DETECTION
Human generated content on the Web are usually informal, and

it is not uncommon that standard features such as question mark
or utterance are absent in cQA questions. For example, question
mark might be used in cases other than questions (e.g. denoting
uncertainty), or could be overlooked after a question. Therefore,
traditional methods using certain heuristics or hand-crafted rules
become inadequate to cope with various online question forms.
To overcome these obstacles, we propose an automated approach
to extracting salient sequential and syntactic patterns from
question sentences, and use these patterns as features to build a
question detector. Research on sequential patterns has been well
discussed in many literatures, including the identification of

comparative sentences [9], the detection of erroneous sentences
[17] and question sentences [4]. However, works on syntactic
patterns have only been partially explored [17,18]. Grounded on
these previous works, we next explain our pattern mining process,
together with the learning algorithm for the classification model.

2.1 Sequential Pattern Mining
Sequential Pattern is also referred to as Labeled Sequential

Pattern (LSP) in the literatures. It is in the form of CS  , where
S is a sequence <t1,…,tn>, and C is the class label that the
sequence S is classified to. In the problem of question detection, a
sequence is defined to be a series of tokens from sentences, and
the class is in the binary form of {Q, NQ} (resp. question and
non-question). The purpose of sequential pattern mining is to
extract a set of frequent subsequence of words that are indicative
of questions. For example, the word sequence “anyone know what
… to” is a good indication to characterize the question sentence
“anyone know what I can do to make me less tired”. Note that the
mined sequential tokens need not to be contiguous as appeared in
the original text.

There is a handful of algorithms available to find all frequent
subsequences, and the Prefixspan algorithm [11] is reported to be
efficient in discovering all relative frequents by using a pattern
growth method. We adopt this algorithm in our work by imposing
the following additional constraints:
1) Maximum Pattern Length: We limit the maximum number of

tokens in a mined sequence to 5.
2) Maximum Token Distance: The two adjacent tokens tn and

tn+1 in the pattern need to be within a threshold window in the
original text. We set it to 6.

3) Minimum Support: We set the minimum percentage of
sentences in database D containing the pattern p to 0.45%.

4) Minimum Confidence: We set the probability of the pattern p
being true in database D to 70%.

To overcome the sparseness problem, we generalize the tokens
by applying Part-of-Speech (POS) taggers to all tokens except
some keywords including 5W1H words, modal words, stop words
and the most frequent occurring words mind from cQA such as
“any1”, “im”, “whats” etc. For example, the pattern <any1, know,
what> will be converted to <any1, VB, what>. Each generalized
pattern makes up a binary feature for the classification model as
we will introduce in Section 2.3.

2.2 Syntactic Shallow Pattern Mining
We found that sequential patterns at the lexical level might not

always be adequate to categorize questions. For example, the
lexical pattern <when, do> presumes the non-question “Levator
scapulae is used when you do the traps workout” to be a question,
and the question “know someone with an eating disorder?” could
be missed out due to the lack of indicative lexical patterns. These
limitations, however, could be alleviated by syntactic features.
The tree pattern (SBAR(WHADVP(WRB))(S(NP)(VP))) extracted
from the former example has the order of NP and VP being
switched, which might indicate the sentence to be a non-question,
whereas the tree pattern (VP(VB)(NP(NP)(PP))) may be evidence
that the latter example is indeed a question, because this pattern is
commonly observed in the archived questions.

Syntactic patterns have been partially explored in erroneous
sentence detection [17], in which all non-leaf nodes are flattened
for frequent substructure extraction. The number of patterns to be
explored, however, grows exponentially with the size of the tree,
which we think is inefficient. The reason is that the syntactic

C1: i heard somewhere that in order to become a dentist, you need certain
hours of volunteering or shadowing.

Q1: is that true?

Q2: if it is, how many hours?

C2: i have only a few hours of such activity…

Q3: and can you write down other requirements that one would need to
become a dentist

C3: i know there are a lot of things but if you can write down as much as you
can, that'd be a lot of help.

C4: thanks

pattern will become too specific if mining is extended to a very
deep level, and nodes at certain levels do not carry much useful
structural information favored by question detection (e.g., the
production rules NP→DT•NN at the bottom level).

For better efficiency, we focus only on certain portion of the
parsing tree by limiting the depth of the sub-tree patterns to be
within certain levels (e.g. 2 ≤ D ≤ 4). We further generalize each
syntactic pattern by removing some nodes denoting modifiers,
preposition phrases and conjunctions etc. For instance, the pattern
SQ(MD)(NP(NN))(ADVP(RB))(VP(VP)(NP)(NP)) extracted from
the question “can someone also give me any advice?'' could be
generalized into SQ(MD)(NP(NN))(VP(VP)(NP)(NP)), where the
redundant branch ADVP(RB) that represents the adverb “also” is
pruned. The pattern extraction process is outlined in Algorithm 1.
The overall pattern mining strategy is analogous to the mining of
sequential patterns, where the measures including support and
confidence are taken into consideration to control the significance
of the mined patterns. The discovered patterns are used together
with the sequential patterns as features for the learning of
classification model.

Algorithm 1 ExtractPattern (S , D)
Input: A set of syntactic trees for sentences (S); the depth range (D)
Output: A set of sub-tree shallow patterns extracted from S

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

Patterns = {};
for all Syntactic tree T ∈ S do
 Nodes ← level order traversal of T from top to bottom;
 for all node n ∈ Nodes do
 Extract subtree p rooted under node n, with depth within the range D;
 p ← generalize (p); // remove modifier nodes etc.
 Patterns.add (p); // add p as a candidate
 end for
end for
return Patterns;

2.3 Model Learning
The input to an algorithm that learns a binary classifier consists

normally of both positive and negative examples. While it is easy
to discover certain patterns from questions, it becomes unnatural
to identify characteristics for non-questions. The imbalanced data
distribution leads normal classifiers to perform poorly on the
model learning. To address this issue, we propose to learn with
the one-class SVM method. One-class SVM is built on top of the
standard two-class SVM method, and its basic idea is to transform
features from only positive examples via a kernel to a hyper-
plane, and treats the origin as the only member of the negative
class. It further uses relaxation parameters to separate the image
of positive class from the origin, and finally applies the standard
two-class SVM techniques to learn a decision boundary. As a
result, data points outside the boundary are considered to be
outliers, i.e. non-questions in our problem.

The training data as used by traditional supervised learning
methods usually require human labelling, which is not cheap. To
save human efforts on data annotation, we take a shortcut by
assuming all questions ending with question marks as an initial set
of positive examples. This assumption is acceptable, as according
to the results reported in [4], the rule-based method using only
question mark achieves a very high precision (97%) in detecting
questions. It in turn indicates that questions ending with “?” are
highly likely to be real questions. To reduce the effect of possible
outliers (e.g. non-questions ending with “?”), we need to purify
the initial training set. There are many techniques available for
training data refinement, such as bootstrapping, condensing, and
editing. We choose a SVM-based data editing and classification
method proposed by [15] to iteratively remove the samples likely

to be outliers. The detail is not covered here as it is beyond the
scope of this paper.

For one-class SVM training, the linear kernel is used, as it is
shown to outperform other kernel functions. In the iterations of
training data refinement, the parameter ν that controls the upper
bound percentage of outliers is set to 0.02. The question detector
model learned ultimately serves as a component for the multi-
sentence question segmentation system.

3. Multi-Sentence Question Segmentation
Unlike traditional text segmentation, question segmentation

ought to group each sub-question with its context sentences while
separating it from the other sub-questions. Investigations show
that the user posting styles in the online environment are largely
unpredictable. While some users ask multiple questions in an
interleaved manner, some prefer to list the whole description first
and ask all sub-questions later. Therefore, naive methods such as
using distance based metrics will be inadequate, and it is a great
challenge to segment multi-sentence questions especially when
the description sentences in various aspects are mixed together.

In the remainder of this section, we present a novel graph-
based propagation method for segmenting multi-sentence
questions. While the graph based method has been successfully
applied in many applications like web search, to the best of our
knowledge, this is the first attempt to apply it to the question
segmentation problem. The intuition behind the use of graph
propagation approach is that if two description sentences are
closely related and one is the context of a question sentence, then
the other is also likely to be its context. Likewise, if two question
sentences are very close, then the context of one is also likely to
be the context of the other. We next introduce the graph model of
the multi-sentence question, followed by the sentence closeness
score computation and the graph propagation mechanism.

3.1 Building Graphs for Question Threads
Given a question thread comprising multiple sentences, we

represent each of its sentences as a vertex v. The question detector
is then applied to divide sentences into question sentences and
non-question sentences (contexts), forming a question sentence
vertex set Vq and a context sentence vertex set Vc respectively.

We model the question thread into a weighted graph (V, E)
with a set of weight functions Ew : , where V is the set of
vertices Vq∪Vc, E is the union of three edge sets Eq∪Ec∪Er, and
w(E) is the weight associated with the edge E. The three edge sets
Eq, Ec and Er are respectively defined as follows:

- Eq: a set of directed edges u→v, where u, v ∈ Vq;
- Ec : a set of directed edges u→v, where u, v ∈ Vc;
- Er : a set of undirected edges u–v, where u ∈ Vq and v ∈ Vc.
While the undirected edge indicates the symmetric closeness

relationship between a question sentence and a context sentence,
the directed edge captures the asymmetric relation between two
question sentences or two context sentences. The intuition of
introducing the asymmetry relationship could be explained with
the example given in Figure 1. It is noticed that C1 is the context
of the question sentence Q1 and C2 is the context of the question
sentence Q2. Furthermore, Q2 is shown up to be motivated by Q1,
but not in the opposite direction. This observation gives us the
sense that C1 could also be the context of Q2, but not for C2 and
Q1. We may reflect this asymmetric relationship using the graph
model by assigning higher weight to the directed edge Q1→Q2
than to Q2→Q1. As a result, the weight of the chain C1→Q1→Q2
becomes much stronger than that of C2→Q2→Q1, indicating that

C1 is related to Q2 but C2 is not related to Q1, which is consistent
to our intuition. From another point of view, the asymmetry helps
to regulate the direction of the closeness score propagation.

We give two different weight functions for edges depending on
whether they are directed or not. For the directed edge (u→v) in
Eq and Ec, we consider the following factors in computing weight:
1) KL-divergence: given two vertices u and v, we construct the

unigram language models Mu and Mv for the sentences they
represent, and use KL-divergence to measure the difference
between the probability distributions of Mu and Mv. We use
DKL(Mu||Mv) to model the connectivity from u to v:

 w
v

u
uvuKL Mwp

Mwp
MwpMMD

)|(

)|(
log)|()||((1)

Generally, the smaller the divergence value, the stronger the
connectivity, and the value of DKL(Mu||Mv) is usually unequal
to DKL(Mv||Mu), thereby representing the asymmetry.

2) Coherence: it is observed that the subsequence sentences are
usually motivated by the earlier sentences. Given two vertices
u, v, we say that v is motivated by u (or u motivates v) if v
comes after u in the original post, and there are conjunction or
linking words connecting in-between. The coherence score
from u to v is determined as follows:






otherwise

uby motivated is v if
uvCoh

0

1
)|((2)

3) Coreference: coreference commonly occurs when multiple
expressions in a sentence or multiple sentences have the same
referent. We observe that sentences having the same referent
are somehow connected, and the more the referents two
sentences share, the stronger the connection. We perform the
coreference resolution on a question thread, and measure the
coreference score from vertex u to vertex v as follows:





 



otherwise

u after comes v ife
uvRef

vureferent

0

,1
)|(

|}{|
 (3)

Note that all the metrics introduced above are asymmetric,
meaning that the measure from u to v is not necessarily the same
as that from v to u. Given two vertices u, v ∈ Eq or Ec, the weight
of the edge u→v is computed by a linear interpolation of the three
factors as follows:

)|()|(
)||(1

1
)(3211 uvRefuvCoh

MMD
vuw

vuKL

 




where 1,,0 321   . (4)

Since DKL(Mv||Mu) ≥ 0, 0 ≤ Coh(v|u) ≤ 1, and 0 ≤ Ref(v|u) ≤ 1,
the interval range of w1(u→v) is between 0 to 1, and we do not
need to apply normalization on this weight. We employed grid
search with 0.05 stepping space in our experiments and found that
the combination of {α1 = 0.4, α2 = 0.25, α3 = 0.35} gives the most
satisfactory results.

While the weight of the directed edges in Eq and Ec measures
the throughput of the score propagation from one to another, the
weight of the undirected edge (u–v) in Er demonstrates the true
closeness between a question and a context sentence. We consider
the following factors in computing the weight for edges in Er :
1) Cosine Similarity: given a question vertex u and a context

vertex v, we measure their cosine similarity weighted by the
word inverse document frequency (idfw) as follows:













vw wvuw wu

vuw wvu

idfwfidfwf

idfwfwf
vuSim

22

,
2

))(())((

)()()(
),((5)

where fu(w) is the frequency of word w in sentence u, idfw is
the inverse document frequency (# of posts containing w). We
do not employ KL-divergence as we believe that the similarity
between question and context sentences is symmetric.

2) Distance: questions and contexts separated far away are less
likely to be relevant as compared to neighboring pairs. Hence,
we take the following distance factor into account:

),(),(vuevuDis  (6)

where),(vu is proportional to the number of sentences
between u and v in the original post.

3) Coherence: the coherence between a question and a context
sentence is also important, and we take it into account with
the exception that the order of appearance is not considered:






otherwise

 wordsnconjunctioby linked if
vuCoh

0

1
),((7)

4) Coreference: similarly, it measures the number of the same
referents in the question and context, without considering their
ordering:

|}{|1),(vureferentevuRef  (8)
The final weight of the undirected edge (u–v) is computed by a

linear interpolation of the abovementioned factors:
),(),(),(),()(43212 vuRefvuCohvuDisvuSimvuw  

where 1,,,0 4321   (9)

The combination of {β1 = 0.4, β2 = 0.1, β3 = 0.3, β3 = 0.2}
produces best results with grid search. Note that normalization is
not required as each factor is valued between 0 and 1. With the
weight of each edge defined, we next introduce the propagation
mechanism of the edge scores.

3.2 Propagating the Closeness Scores
For each pair of vertices, we assign the initial closeness score

to be the weight of the edge in-between using the weight function
introduced in Section 3.1, depending on whether the edge is in Eq,
Ec or Er. Note that if the edge weight is very low, two sentences
might not be closely related. For fast processing, we use a weight
threshold θ to prune edges with weight below θ. The parameter θ
is empirically determined, and we found in our experiments that
the results are not very sensitive to θ value below 0.15.

Algorithm 2 MapPropagation (G(V,E))
Input: The map model with initial scores assigned to every edge
Output: The map with updated closeness scores between questions and contexts
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

for every context c∈Vc and every question q∈Vq do // initialization
w(q,c) = w2(q,c);

end for
while score is not converged do

for every context c∈Vc and question q∈Vq do // propagate from c to q
 w’(q,c) = MAXqi∈ Vq { λw(qi,c)w1(qi→q) }
 if (w(q,c) < w’(q,c))
 w(q,c) = w’(q,c)
end for
for every question q∈Vq and context c∈Vc do // propagate from q to c
 w’(c,q) = MAXci∈ Vc { λw(ci,q)w1(ci→c) }
 if (w(c,q) < w’(c,q))
 w(c,q) = w’(c,q)
end for

end while

With the initial closeness scores, we carry out the score
propagation using the algorithm outlined in Algorithm 2. The
basic idea of this propagation algorithm is that, given a question
sentence q and a context sentence c, if there is an intermediate
question sentence qi such that the edge weight w1(qi→q), together
with the closeness score w(qi,c) between qi and c, are both

relatively high, then the closeness score w(q,c) between q and c
could be updated to λw1(qi→q)w(qi,c) in case the original score is
lower than that. In other words, qi becomes the evidence that q
and c are related. The propagation algorithm works similarly in
propagating scores from question sentences to context sentences,
where an intermediate context ci could be the evidence that c and
q are related. Notice that the direction of propagation is not
arbitrary. For example, it makes no sense if we propagate the
score along the path of c→ci→q, because ci is simply the receiver
of c, which could not be the evidence that a question and a
context are correlated. When considering a pair of q and c, the
possible directions of propagation are illustrated in Figure 2, in
which the dashed lines indicate invalid propagation paths.

Figure 2: Illustration of the direction of score propagation

The damping factor λ in the algorithm controls the transitivity
among nodes. In some circumstances, the propagated closeness
score might not indicate the true relatedness between two nodes,
especially when the score is propagated through an extremely
long chain. For example, {ABC} is close to {BCD}, {BCD} is
close to {CDE}, and {CDE} is close to {DEF}. The propagation
chain could infer {ABC} to be related to {DEF}, which is not
true. The introduction of damping factor λ can leverage this
propagation issue by penalizing the closeness score when the
chain becomes longer. We empirically set λ to 0.88 in this work.

The propagation of the closeness score will eventually
converge. This is controlled by our propagation principle that the
updated closeness score is a multiplication of two edge weights
whose value is defined to fall between 0 and 1. Hence the score is
always upper bounded by the maximum weight of the edges in E.

After the propagation reaches the stationary condition, we need
to extract all salient edges in Er for the alignment of questions and
contexts. One straightforward method is to pre-define a threshold
ψ, and remove all edges weighted under ψ. However, this method
is not very adaptive, as the edge weights vary greatly for different
questions and a pre-defined threshold is not capable to regulate
the appropriate number of alignments between questions and
contexts. In this work, we take a dynamical approach instead: we
first sort edges in Er by the closeness score and extract them one
by one in descending order <e1, e2, … , en>. The extraction
process terminates at em when one of the following criteria is met:

1.)
1

(
11 m

m
i imm ewew

m
 ewew     , where ewi is the i-th

edge weight in the order and ω is the control parameter.
2. ewm+1 < η , where η is a pre-defined threshold controlling the

overall connection quality (we set it to 0.05).
3. m = n, meaning all edges have been extracted out from Er.

When the extraction procedure terminates, the extracted edge
set {e1,…,em} represents the final alignment between questions
and contexts. For each edge ei connecting between a context c and
a question q, c will be considered as the context to question q, and
they belong to the same question segment. For example, a final

edge set {(q1,c1), (q2,c2), (q1,c2), (q2,c4), (q3,c1), (q2,c3)} produces
three question segments: (q1 – c1,c2), (q2 – c2,c3,c4) and (q3 – c1).
Note that the segmentation works in a fuzzy way such that no
explicit boundaries are defined between sentences. Instead, a
question could have multiple context sentences, whereas a context
sentence does not necessarily belong to only one question.

3.3 Segmentation-aided Retrieval
By applying segmentation on the multi-sentence questions from
cQA, sub-questions and their corresponding contexts that are
topically related could be grouped. Figure 3 shows an improved
retrieval framework with segmentation integrated. Different from
existing models, the question matcher matches two question
sentences with the assistance of additional related contexts such
that the users’ query can be matched with the archived cQA
questions more precisely. More specifically, the user query is no
longer restricted to a short single-sentence question, but can be in
the form of multiple sub-questions complemented with many
description sentences. An archived question thread asking in
various aspects could also be indexed into different question-
context pairs such that the matching is performed on the basis of
each question-context pair.

Figure 3: Retrieval framework with question segmentations

4. EXPERIMENTS
In this section, we present empirical evaluation results to assess

the effectiveness of our question detection model and multi-
sentence segmentation technique. In particular, we conduct
experiments on the Yahoo! Answers QA archive and show that
our question detection model outperforms traditional rule based or
lexical based methods. We further show that our segmentation
model works more effectively than conventional text
segmentation techniques in segmenting multi-sentence questions,
and it gives additional performance boosting to cQA question
matching.

4.1 Evaluation of Question Detection
Dataset: We issued getByCategory API query to Yahoo!

Answers, and collected a total of around 0.8 million question
threads from Healthcare domain. From the collected data, we
generate the following three datasets for the experiments:
- Pattern Mining Set: Around 350k sentences extracted from 60k

question threads are used for lexical and syntactic pattern

w(q1,c)
q1

q2

qn

.

.

. q c

c1

c2

cn

.

.

.

w(q,c)

w1(qi→q)

w(c1,q)
q1

q2

qn

.

.

. q c

c1

c2

cn

.

.

.

w(q,c)

w1(ci→c)

Propagating from c to q
only nodes in Vq are considered to be
intermediate nodes for propagation

Invalid! Invalid!

Propagating from q to c
only nodes in Vc are considered to be
intermediate nodes for propagation

○2○1

Question
Thread

Questions

Contexts

Question
Detection

Question
Segmentation

Question
Matcher

Query

……

C11,C12, …

C21,C22, …

Cn1,Cn2, …Qn

Q2

Q1
Question Repository

Input

Output

Segmentation

Segmentation Module

Segmentation

……

C11, C12, …

C21, C22, …

Cn1, Cn2, … Qn

Q2

Q1

… …

C11, C12, …

C21, C22, …

Cn1,Cn2, … Qn

Q2

Q1

Indexer
Q index

C index

Question
Segments

Questions Contexts

Question Threads

… …

M1 M3

M2

M4

M5

Segmentation
Module

Matched QuestionsQuestion Retrieval System

RS QS

Questions Contexts

mining, where those ending with “?” are treated as question
sentences and the others as non-question sentences1.

- Training Set: Around 130k sentences ending with “?” from
another 60k question threads are used as the initial positive
examples for one-class SVM learning method.

- Testing Set: Two annotators are asked to tag some randomly
picked sentences from a third post set. A total of 2004 question
sentences and 2039 non-question sentences are annotated.
Method: To evaluate the performance of our question

detection model, we use five different systems for comparison:
1) 5W1H (baseline1): a rule based method determines that a

sentence is a question if it contains 5W1H words.
2) Question Mark (baseline2): a rule based method judges that a

sentence is a question if it ends with the question mark “?”.
3) SeqPattern: Using only sequential patterns as features.
4) SynPattern: Using only syntactic patterns as features.
5) SeqPattern+SynPattern: Using both sequential patterns and

syntactic patterns as features for question sentence detection.
A grid search algorithm is performed to find the optimal number
of features used for model training, and a set of 1314 sequential
patterns and 580 syntactic patterns are shown to give the best
performance. Table 1 illustrates some pattern examples mined.

Table 1: Examples for sequential and syntactic patterns

Pattern Type Pattern Example

Sequential Pattern
< anyone VB NN > < what NN to VB NN >
< NNS should I > < can VB my NN>
< JJS NN to VB > …

Syntactic Pattern
(SBARQ (CC)(WHADVP (WRB))(SQ (VBP)(NP)(VP)))
(SQ (VBZ)(NP (DT))(NP (DT)(JJ)(NN)))
(VP (VBG)(S (VP))) …

Metrics & Results: We employ Precision, Recall, and F1 as
metrics to evaluate the question detection performance. Table 2
tabulates the comparison results. From the table, we observe that
5W1H performs poorly in both precision and recall. Question
mark based method gives the highest precision, but the recall is
relatively low. This observation is in line with the reported results
in [4]. On the other hand, SeqPattern gives relatively high recall
and SynPattern gives relatively high precision. The combination
of both augments the performance in both precision and recall by
a lot, and it achieves statistically significant improvement (t-test,
p-value<0.05) as compared to SeqPattern and SynPattern. We
believe that the improvement stems from the ability of the
detection model to capture the salient characteristics in questions
at both the lexical and syntactic levels. The results are also
consistent with our intuition that sequential patterns could
misclassify a non-question to a question, but syntactic patterns
may leverage it to certain extent. It is noted that our question
detector exhibits a sufficiently high F1 score for its use in the
multi-sentence question segmentation model in the later phase.

Table 2: Performance comparisons for question detection on
different system combinations

System Combination Precision (%) Recall (%) F1(%)
(1) 5W1H 75.37 49.50 59.76
(2) Question Mark 94.12 77.50 85.00
(3) SeqPattern 88.92 88.47 88.69
(4) SynPattern 90.06 78.19 83.71
(5) SeqPattern+SynPattern 92.11 89.67 90.87

1 This is acceptable for a large dataset, as a question ending with “?” is

claimed to have high precision to be a true question.

4.2 Direct Assessment of Multi-Sentence
Question Segmentation via User Study

We first evaluate the effectiveness of our multi-sentence
question segmentation model (denoted as MQSeg) via a direct
user study. We set up two baselines using the traditional text
segmentation techniques for comparison. The first baseline
(denoted as C99) employs the C99 algorithm [4], which uses a
similarity matrix to generate a local sentence classifier so as to
isolate topical segments. The second baseline (denoted as
TransitZone) is built on top of the method proposed in [12]. It
measures the thematic distance between sentences to determine a
series of transition zones, and uses them to locate the boundary
sentences. To conduct the user study, we generate a small dataset
by randomly sampling 200 question threads from the collected
data. We run the three segmentation systems for each question
thread, and present the segmentation results to two evaluators
without telling them from which system the result was generated.
The evaluators are then asked to rate the segmentation results
using a score from 0 to 5 with respect to their satisfaction. Figure
4 shows the score distributions from the evaluators for three
different segmentation systems. We can see from Figure 4 that
users give relatively moderate scores (avg. 2 to 3) to the results
returned by two baseline systems, whereas they seem to be more
satisfied with the results given by MQSeg. The score distribution
in MQSeg largely shifts towards high end as compared to the two
baseline systems. The average rating scores for three different
systems are 2.63, 2.74, and 3.6 respectively. We consider two
evaluators to be agreeable to the segmentation result if their score
difference does not exceed 1, and the average level of peer
agreement obtained between the two evaluators is 93.5%.

0

5

10

15

20

25

30

35

0 1 2 3 4 5

%

Score

Baseline 1 ‐ C99
EV1

EV2

0

5

10

15

20

25

30

35

0 1 2 3 4 5

%

Score

Baseline 2 ‐ TransitZone
EV1

EV2

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

%

Score

Our System ‐MQSeg
EV1

EV2

Avg StDev Peer Agrmt Avg StDev Peer Agrmt Avg StDev Peer Agrmt
2.63 1.34 93.5% 2.74 1.35 92.5% 3.6 1.28 94.5%

Figure 4: Score distribution of user evaluation for 3 systems

It is to our expectation that MQSeg performs better than C99 or
TransitZone segmentation systems. One straightforward reason is
that MQSeg is specifically designed to segment multi-sentence
questions, whereas the traditional systems are designed for
generic purpose and do not distinguish question sentences from
contexts. While the conventional systems fail to capture the
relationship between questions and their contexts, our system
aligns the questions and contexts in a fuzzy way that one context
sentence could belong to different question segments. As online
content is usually freely posted and does not strictly adhere to the
formal format, we believe that our fuzzy grouping mechanism is
more suitable to correlate sub-questions with their contexts,
especially when there is no obvious sign of association.

4.3 Performance Evaluation on Question
Retrieval with Segmentation Model

In cQA, either archived questions or user queries could be in
the form of a mixture of question and description sentences. To
further evaluate our segmentation model and to show that it can
improve question retrieval, we set up question retrieval systems
coupled with segmentation modules for either question repository
or user query.

Methods: We select BoW, a simple bag-of-word retrieval
system that matches stemmed words between the query and
questions, and STM, a syntactic tree matching retrieval model
proposed in [18] as two baseline systems for question retrieval.
For each baseline, we further set up three different combinations:
1) Baseline+RS: a baseline retrieval system integrated with

question repository segmentation.
2) Baseline+QS: a baseline retrieval system equipped with user

query segmentation.
3) Baseline+RS+QS: the retrieval system with segmentations for

both repository questions and user queries.
It gives rise to a total of 6 different combinations of methods for
comparison.

Dataset: We divide the collected 0.8 million question dataset
from Yahoo! Answers into two parts. The first part (0.75M) is
used as a question repository, while the remaining part (0.05M) is
used as a test set. For data preprocessing, systems coupled with
RS will segment and index each question thread in the repository
accordingly, whereas systems without RS simply performs basic
sentence indexing tasks. From the test set, we randomly select
250 sample questions, each of which is in the form of one single-
sentence question with some context sentences. The reason that
we do not take queries of multi sub-questions as test cases is that
traditional cQA question retrieval systems cannot handle complex
queries, making it impossible to conduct the comparison test.
Nevertheless, it is sufficient to use single-question queries here as
our purpose is to testify that the context extracted by the
segmentation model could help question matching.

For systems equipped with user query segmentation (QS), we
simply use the testing samples as they are, whereas for systems
without QS, we manually extract the question sentences from the
samples and use them as queries without their corresponding
context sentences. For each retrieval system, the top 10 retrieval
results are kept. For each query, we combine the retrieval results
from different systems, and ask two annotators to label each result
to be either “relevant” or “irrelevant” without telling them from
which system the result is generated. The kappa statistic for
identifying relevance between two evaluators is reported to be
0.73. A third person will be involved if conflicts happen. By
eliminating some queries that have no relevant matches, the final
testing set contains 214 query questions.

Table 3: Performance of different systems measured by MAP,
MRR, and P@1 (%chg shows the improvement as compared
to BoW or STM baselines. All measures achieve statistically
significant improvement with t-test, p-value<0.05)

Systems MAP %chg MRR %chg P@1 %chg
BoW 0.5807 – 0.7138 – 0.5981 –
BoW+RS 0.6389 10.02 0.7565 5.98 0.6542 9.38
BoW+QS 0.6245 7.54 0.7429 4.07 0.6355 6.25
BoW+RS+QS 0.6558 12.93 0.7690 7.73 0.6682 11.72

STM 0.6653 – 0.7429 – 0.6308 –
STM+RS 0.7310 9.88 0.7774 4.64 0.6776 7.41
STM+QS 0.7238 8.79 0.7893 6.24 0.6916 9.63
STM+RS+QS 0.7415 11.45 0.7984 7.46 0.7009 11.11

Metrics & Results: We evaluate the performance of retrieval
systems using three metrics: Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR), and Precision at Top One (P@1).
The evaluation results are presented in Table 3.

We can see from Table 3 that STM consistently outperforms
BoW. Applying question repository segmentation (RS) over both
BoW and STM baselines boosts system performance by a lot. All

RS coupled systems achieve statistically significant improvement
in terms of MAP, MRR and P@1. We believe that the
improvement stems from the ability of the segmentation module
to eliminate irrelevant content that is favored by traditional BoW
or STM approaches. Take the query question “What can I eat to
put on weight?” as an example, traditional approaches may match
it to an irrelevant question “I’m wearing braces now. what am I
allowed to eat?” due to their high similarity on the questioning
part. The mismatch however, could be alleviated if repository
segmentation gets involved, where the context sentence can give
clear clue that the above archived sentence is not relevant to the
user query.

Performing user query segmentation (QS) on top of baseline
systems also brings in large improvements in all metrics. This
result is in line with our expectation. The introduction of QS is
based on the intuition that contexts could complement questions
with additional information, which help the retrieval system to
better understand the user’s information need. For example, given
an example question from our testing set “Questions about root
canal?”, it makes no sense for retrieval systems to find its related
questions if the context is absent, because there could be hundreds
of irrelevant questions in the QA archive as long as they are
concerned about “root canal”.

Interestingly, STM+QS gives more improvement over STM as
compared to BoW+QS over BoW. Our reading is that, BoW is
less sensitive to the query context as compared to STM. To be
more specific, the query context provides information at the
lexical level, and BoW handles bad-of-word queries at the lexical
level, whereas STM matches questions at the syntactic level. As
such, it is reasonable that matching at both lexical and syntactic
levels (STM+QS) gives more performance boosting as compared
to only at lexical level (BoW+QS). Similar interpretation could be
applied to explain the finding that BoW+RS system gives more
significant improvement over BoW as compared to BoW+QS.
Furthermore, we conjecture that, without RS, BoW is likely to
match the query with some context sentences, whereas having
question repository properly segmented overcomes this issue to a
large extent.

Lastly, the combination of both RS and QS brings in significant
improvement over the other methods in all metrics. The MAP on
systems integrated with RS and QS improves by 12.93% and
11.45% respectively over BoW and STM baselines. RS+QS
embedded systems also yield better top one precision by correctly
retrieving questions at the first position on 143 and 150 questions
respectively, out of a total of 214 questions. These significant
improvements are consistent to our observations that RS and QS
complement each other in not only better analyzing the user’s
information need but also organizing the question repository more
systematically for efficient question retrieval.

Error Analysis: Although we have shown that RS together
with QS improves question retrieval, there is still plenty of room
for improvement. We perform micro-level error analysis and
found that the segmentation sometimes fails to boost retrieval
performance mainly for the following three reasons:
1) Question detection error: The performance of question

segmentation highly depends on the reliability of the question
detector. Although we have shown that the performance of our
question detection model is very competitive, the noisy online
environment still leads many questions to be miss-detected.
Examples are the question in abbreviated form such as “signs
of a concussion?” and the question in declarative form such as
“I'm going through some serious insomniac issues?” etc.

2) Closeness gaps: The true closeness score between sentences is
relatively hard to measure. For simplicity and efficiency, the
relatedness measure in this work is more at the lexical level,
and the only semantic factor we have taken is coreference
resolution. These measures may become insufficient when the
sentences grow in complexity, especially when there is a lack
of lexical evidence (e.g. cue words or phrases etc.) indicative
of the connection between two sentences. This is a difficult
challenge, and a good strategy may be to apply more
advanced NLP techniques or semantic measures.

3) Propagation errors: The propagated closeness score could be
unreliable even when the propagation chain is short. Given
three questions “is it expensive to see a dentist instead?” (Q1),
“if it is not, how long it takes to get my teeth whitened?” (Q2),
and “How many ways to get my teeth whitened?” (Q3), Q1 is
considered to be the predecessor of Q2, and Q3 is closed to Q2,
but the linkage between Q1 and Q3 is so weak that assigning
the context of Q1 to Q3 becomes inappropriate. We conjecture
that selecting the damping factor λ in a more dynamic way
(e.g. associating λ with the actual question) could help to
adjust the propagation trend. We leave it to our future work.

5. RELATED WORK
There have been many literature works in the direction of

question retrieval, and these works could generally be classified
into two genres: the early FAQ retrievals and the recent cQA
retrievals. Among FAQ related works, many retrieval models
have been proposed, including the conventional vector space
model [8], noisy channel model [16], and translation based model
[14] etc. Most of these works tried to extract a large number of
FAQ pairs from the Web, and use the FAQs dataset to do training
and retrieval.

The cQA archive is different from FAQ collections in the sense
that the content of cQA archive is much noisier and the scope is
much wider. The state-of-the-art cQA question retrieval systems
also employ different models to perform the search, including the
vector space model [5], language model [5,7], Okapi model [7],
and translation model [7,14,19] etc. Claiming that purely lexical
level models are not adequate to cope with natural languages,
Wang et al. [18] proposed a syntactic tree matching model to rank
historical questions.

However, all these previous works handle bag-of-words queries
or single-sentence questions only. On the contrary, we take a new
approach by introducing a question segmentation module, where
the enhanced retrieval system is capable of segmenting a multi-
sentence question into parts that are topically related and perform
better question matching thereafter. To the best of our knowledge,
no previous work has attempted to look into this direction, or use
question segmentation to improve the question search.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a new segmentation approach

for segmenting multi-sentence questions. It separates question
sentences from non-question sentences and aligns them according
to their closeness scores as derived from the graph based model.
The user study showed that our system produces more satisfactory
results as compared to the traditional text segmentation systems.
Experiments conducted on the cQA question retrieval systems
further demonstrated that segmentation significantly boosts the
performance of question matching.

Our qualitative error analysis revealed that the segmentation
model could be improved by incorporating a more robust question

detector, together with more advanced semantic measures. One
promising direction for future work would be to also analyze the
answers to help question segmentation. This is because answers
are usually inspired by questions, where certain answer patterns
could be helpful to predict the linkage between question and
context sentences. The segmentation system in this work takes all
noisy contexts as they are, without further analysis. The model
could be further improved by extracting the most significant
content and align them with question sentences. Finally, it is
important to evaluate the efficiency of our proposed approach as
well as to conduct additional empirical studies of the performance
of question search with segmentation model incorporated.

7. REFERENCES
[1] Trec proceedings. http://trec.nist.gov/.
[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G.

Mishne. Finding high-quality content in social media. In
WSDM, 2008.

[3] F. Y. Y. Choi. Advances in domain independent linear text
segmentation. In NAACL, 2000.

[4] G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun.
Finding question-answer pairs from online forums. In SIGIR,
2008.

[5] H. Duan, Y. Cao, C.-Y. Lin, and Y. Yu. Searching questions
by identifying question topic and question focus. In HLT-
ACL, 2008.

[6] M. A. Hearst. Multi-paragraph segmentation of expository
text. In ACL, 1994.

[7] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar questions
in large question and answer archives. In CIKM, 2005.

[8] V. Jijkoun and M. de Rijke. Retrieving answers from
frequently asked questions pages on the web. In CIKM,
2005.

[9] N. Jindal and B. Liu. Identifying comparative sentences in
text documents. In SIGIR, 2006.

[10] M.-Y. Kan, J. L. Klavans, and K. R. McKeown. Linear
segmentation and segment significance. In WVLC, 1998.

[11] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal,
and M. chun Hsu. Prefixspan: Mining sequential patterns
efficiently by prefix-projected pattern growth. In ICDE,
2001.

[12] V. Prince and A. Labadi´e. Text segmentation based on
document understanding for information retrieval. 2007.

[13] J. C. Reynar. Topic segmentation: Algorithms and
applications, 1998.

[14] S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and
Y. Liu. Statistical machine translation for query expansion in
answer retrieval. In ACL, 2007.

[15] X. Song, G. Fan, and M. Rao. Svm-based data editing for
enhanced one-class classification of remotely sensed
imagery. Geoscience and Remote Sensing Letters, IEEE,
2008

[16] R. Soricut and E. Brill. Automatic question answering:
Beyond the factoid. In HLT-NAACL, 2004.

[17] G. Sun, G. Cong, X. Liu, C.-Y. Lin, and M. Zhou. Mining
sequential patterns and tree patterns to detect erroneous
sentences. In AAAI, 2007.

[18] K. Wang, Z. Ming, and T.-S. Chua. A syntactic tree
matching approach to finding similar questions in
community-based qa services. In SIGIR, 2009.

[19] X. Xue, J. Jeon, and W. B. Croft. Retrieval models for
question and answer archives. In SIGIR, 2008.

