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Abstract We propose a higher-level visual representation,
visual synset, for object-based image retrieval beyond vi-
sual appearances. The proposed visual representation im-
proves the traditional part-based bag-of-words image rep-
resentation, in two aspects. First, the approach strengthens
the discrimination power of visual words by constructing
an intermediate descriptor, visual phrase, from frequently
co-occurring visual word-set. Second, to bridge the visual
appearance difference or to achieve better intra-class invari-
ance power, the approach clusters visual words and phrases
into visual synset, based on their class probability distrib-
ution. The rationale is that the distribution of visual word
or phrase tends to peak around its belonging object classes.
The testing on Caltech-256 data set shows that the visual
synset can partially bridge visual differences of images of
the same class and deliver satisfactory retrieval of relevant
images with different visual appearances.
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1 Introduction

Due to the explosive proliferation of digital images, the im-
age retrieval based on their visual content has spurted much
research attention, in order to effectively index, monitor and
manage image databases. Here, we narrow down our focus
to object-based image retrieval (OBIR), which aims to re-
trieve image l containing salient object of the same semantic
class c as the given example query image q from an image
collection DI of semantic classes C = {ci}mi=1.

Recently, many image retrieval systems [4, 12, 24, 33]
have shown that the part-based representation for image re-
trieval is much superior over traditional global features, as
one single image feature computed over the entire image
is not sufficient to represent important local characteristics
of objects [9, 13, 15, 27, 29, 32]. Specifically, the bag-of-
words image representation has drawn much attention, as it
tends to code the local visual characteristics toward object
level, which is closer to the perception of human visual sys-
tems [12]. Analogous to document representation in terms
of words in text domain, the bag-of-words approach models
an image as a geometric-free unordered bag of visual words,
which is formed by vector quantization of local region de-
scriptors, such as Scale Invariant Feature Transform (SIFT)
[18]. By coding the statistics of local image regions indepen-
dently, the bag-of-words approach achieves the robustness in
handling variable object appearances caused by changes in
pose, image capturing conditions, scale, translation, clutter
and occlusion, etc.

Though various systems [4, 12, 24, 33] have shown the
superiority of part-based image representation in image re-
trieval task, the accuracies of image retrieval are still incom-
parable to its analogy in text domain, i.e. the document re-
trieval. The reason is obvious. Compared to textual word,
the visual word does not possess any semantics, as it is only
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Fig. 1 Examples of visual phrase

a quantized vector of sampled local regions. However, if ne-
glecting the semantic factor, what really distinguishes tex-
tual word from visual word is the discrimination and invari-
ance power. Obviously, the textual words are more stable,
indicative and representative of their belonging document
topic, and therefore, possess much better discrimination and
invariance power than visual words. On the other hand, the
low discrimination and invariance power of visual words
lead to low correlation between the topological proximity of
images in feature space and their semantic relevance. Such
low correlations between image features and its semantics
render most statistical machine learning models ineffective
in image retrieval. Hence, in order to achieve better image
retrieval performance, the low discrimination and invariance
issues of visual words must be tackled.

Discrimination issue A visual word might represent differ-
ent semantic meanings in different image context. This en-
cumbers the distinctiveness of visual words and leads to low
discrimination. In fact, the discrimination issue is a prob-
lem of under-representations [31]. Its consequence is effec-
tively small interclass distances. One of the major reasons
for low discrimination issue is that the regions represented
in a visual word might come from the object with differ-
ent semantics but similar local appearances. For example
in Fig. 1, the ‘cars’ and ‘motorbike’ share visually simi-
lar tires. The visual word A is, therefore, not able to dis-
tinguish motorbike from car. However, the combination of
visual words A and B , i.e. the visual phrase AB, can effec-
tively distinguish motorbike from car. The discrimination of
representation can, therefore, be improved by mining inter-
relation among visual words in certain neighborhood region.
Specifically, we exploit the visual phrase, i.e. frequently co-
occurring visual word-set, proposed in [31] to improve the
discrimination power of visual word representation.

Invariance issue The images of the same semantic class
can have arbitrarily different visual appearances and shapes.
Such visual diversity of object causes one image semantics
to be represented by different visual words. This leads to
low invariance of visual words. The consequence is large

Fig. 2 Examples of visual synset that clusters three visual words with
similar image class probability distributions

intra-class variations. In this circumstance, the visual words
become too primitive to effectively model the image seman-
tics, as their efficacy depends highly on the visual similarity
and regularity of images of the same semantics. To tackle
this issue, a higher-level visual content unit is needed. In text
domain, when documents of the same topic or categories
are represented by different sets of words, the word synset
(synonymy set) that links words of similar semantics is ro-
bust to model them [3]. Inspired by this, we propose a novel
visual content unit, visual synset, on top of visual words and
phrases. We define visual synset as a relevance-consistent
group of visual words or phrases with similar semantics, in
the spirit of [34]. However, it is hard to measure the seman-
tics of a visual word or phrase, as they are only a quantized
vector of sampled regions of images. Rather than in a con-
ceptual manner, we define the ‘semantics’ probabilistically
as semantic inferences P(ci |w) of visual word or phrase w

towards image class ci .
Intuitively, if several visual words or phrases from differ-

ent images share similar class probability distribution, like
the brand logos in car images shown in Fig. 2, then the vi-
sual synset that clusters them together shall possess similar
class probability distribution and distinctiveness towards im-
age classes. The visual synset can then partially bridge the
visual differences between these images and deliver a more
coherent, robust and compact representation of images.

The major contribution of our work is: by improving dis-
crimination and invariance power of visual word representa-
tion, we propose a higher level visual feature, visual synset,
to retrieve images beyond their visual appearances. The test-
ing on Caltech-256 data set [8] shows that the visual synset
can partially bridge the visual difference of images of the
same class and retrieve images beyond their visual appear-
ances.
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Fig. 3 The overall framework of visual synsets generation

2 Overview

As shown in Fig. 3, the overall flow of the proposed ap-
proach consists of 3 phases. Phase 1 can be considered as
a standard bag-of-words (BoW) approach. In phase 1, the
region sampling based on extremal scale saliency [6] is ap-
plied on gray-scale images to extract local regions. For each
region, a 128D SIFT descriptor is computed. The vector
quantization on SIFT descriptors is then performed to con-
struct visual vocabulary by exploiting k-means clustering.
The output of phase 1 is the image representations in terms
of visual word vectors. Details of phase 1 will be introduced
in Sect. 2.1.

Phase 2 tackles the low discrimination issue in visual
words, by exploiting the spatial co-occurrence information
among visual words. In the spirit of [31], phase 2 first gener-
ates a transaction database of visual word-sets. Each visual
word-set is a group of spatially neighboring visual words.
Then, the discovery of visual phrases, i.e. frequently co-
occurring visual word-sets, can be reduced to the task of
frequent itemset mining (FIM) in the transaction database
[11, 31]. Details of phase 2 will be introduced in Sect. 3.

Phase 3 first takes a small set of labeled images from each
class as training data set to select a set of highly informa-
tive and distinctive visual words and phrases. It then takes
the joint probabilities of visual words or phrases and image
classes (estimated from the labeled training set) as input to
perform sequential Information Bottleneck (sIB) clustering
algorithm [13] to group visual words/phrases with similar
class probability distributions into visual synsets. Details of
phase 3 will be introduced in Sect. 4.

2.1 Region extraction based on extremal scale saliency

We exploit the extremal scale-saliency [6] based region sam-
pling strategy for visual word construction in phase 1. In
fact, many region sampling algorithms are applicable here,
e.g. keypoint detection like Laplacian of Gaussian, image
segmentation, blobs of homogeneous regions [5], etc. The

reason for utilizing extremal scale saliency [6] for region
sampling is that we want to take the sampling of most re-
peatable image regions as the basis for visual word gener-
ation. This is to mitigate the statistical sparseness issue in
bag-of-words (BoW) image representation, as the BoW im-
age feature is usually a sparse vector with high dimensional-
ity. We further argue that the repeatability of local regions of
different images relies on the spatially integral similarity of
the regions. Therefore, rather than using keypoint detection
or image segmentation, we sample local regions by choos-
ing the ones with extremal global saliency over the entire
region.

In the scale-saliency algorithm [6], a region (circle) is de-
termined by a point x in the image and its scale (radius).
The scale-saliency algorithm defines the saliency of region
in terms of the region’s local signal complexity or unpre-
dictability. More specifically, it exploits the Shannon En-
tropy of local attributes to estimate the region saliency Hd,Rx

as below:

Hd,Rx = −
∑

i

PD,Rx (di) log2 PD,Rx (di) (1)

where Rx is the local region of point x, D is the local
attribute vector with values {d1, . . . , dr}, PD,Rx (di) is the
probability of D taking the value di , and Hd,Rx is the local
entropy or saliency of region Rx . We select D as the color
intensity histogram of local regions. Therefore, the regions
with flatter intensity histogram distributions, namely more
diverse color patterns, tend to have higher signal complexity
and thus higher entropy and saliency.

By (1), each point x in the image will have one saliency
value for each scale region. We then select the extremal
saliency on two dimensions. First, for each point, the max-
imal and minimal saliency and their respective scales are
selected, which leads to two scale-saliency maps, SMapmin
and SMapmax. Second, rather than clustering points with
similar spatial locations and saliency together as in [14], we
spatially detect the local extremity of saliency maps (min-
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imum for SMapmin and maximum for SMapmax) by using
Difference of Gaussian (DoG) function

D(x,σ ) = (
G(x, kσ ) − G(x,σ )

) · SMap(x) (2)

where D(x,σ ) is the DoG saliency of point x, SMap(x) is
the saliency value for point x, k is the multiplicative factor,
σ is the blur factor, and

G(x,σ ) = 1

2πσ 2
e−x2/σ 2

. (3)

This local saliency extremity method based on DoG is in-
spired by the salient keypoint detection by DoG in [18].
The result of DoG function is effectively a new saliency
map D(x,σ ) whose values are the differences between
two blurred saliency maps with different sharpness (σ ). If
D(x,σ ) is larger or smaller than all its 8 spatial neighbors,
then point x is deemed to be the local extremal (maximum
or minimum) in its surrounding neighborhood and the lo-
cal region specified by x and its scale will be selected for
subsequent visual word generation. Intuitively, the selected
extremal regions are the ones with either largest color pat-
tern diversity or smallest diversity, like homogeneous color
regions, in the neighborhood.

3 Constructing visual phrase

In order to improve the discrimination of visual word image
representation, we exploit the spatial and co-occurring in-
formation of visual words to construct visual phrases from
spatially neighboring visual word-sets, in the spirit of [31].

3.1 Mining frequently co-occurring visual word-sets

As introduced in Sect. 2, in the visual word or visual code-
book construction phase, the approach first extracts regions
from an image and computes visual features of regions ai

to generate visual code � = {W1, . . . ,WM}, where Wi is a
visual word. The image I is then represented by a bag of
visual words {W(a1), . . . ,W(ai), . . .}, where W(ai) is the cor-
responding visual word of region ai .

To discover visual phrases, the approach first extracts the
spatially neighboring visual word group for each region.
For each local region ai ∈ I from visual code construction
phase, its local spatial neighborhood G is defined as a group
of its K nearest neighbor regions {W(ai),W(ai1 ),W(ai2 ) . . .

W(aiK
)}. By processing all the images in the database DI ,

a visual word group database G = {Gi}Ni=1 will be gener-
ated. In the domain of data mining, the database G can be
regarded as a transaction database [11]. Therefore, the dis-
covery of frequently co-occurring visual word-sets, i.e. vi-
sual phrases, can be reduced to a task of frequent itemset

mining (FIM) in the database G [11, 31]. We explore the
FP-growth algorithm to perform the FIM task, as its prefix-
tree structure enables it to store and search frequent itemsets
in an extremely efficiently way. A visual word-set P ⊂ � is
counted as a frequently co-occurring set or a visual phrase,
if its frequency freq(P ) > θ .

3.2 Unique counting of maximal visual word-set

The subsets of a frequent visual word-set P are frequent as
well, and therefore, will be falsely counted as visual phrase.
To address this problem, we exploit closed FIM algorithms
to discover maximal frequent itemsets, in the way that any
of its subsets will not be considered as frequent itemset, in
the spirit of [31]. In the phase of FIM, a word-set might be
over-counted, if it lies in the overlapping area of different
neighborhood regions. To overcome this problem, we bor-
row the approach in [31] to re-count real instances of word-
set through the original image database.

3.3 Statistical significance measure

Yuan et al. [31] proposed to measure the statistical signifi-
cance of visual phrase based on its frequency and its compo-
nent visual word frequencies. This measurement, however,
neglects the coherency of component visual words in visual
phrase. We measure the significance on the basis that the
visual phrase should be a visual word-set that is frequently
and coherently occurring together, with respect to certain se-
mantic meaning. Specifically, the significance score L(P ) of
a visual phrase P is defined as:

L(P ) = freq(P ) · P(P |DI )

1 + P(P −|DI )
(4)

where P(P |DI ) is the probability that the visual word-set
P forms a valid visual phrase and it can be approximated
by docfreq(P )

T
, where docfreq(P ) is the document frequency

equal to number of images containing visual phrase P ; and
I is the size of DI . P − is the visual word-set P that does not
form any valid visual phrase; and P(P −|DI ) is the probabil-
ity that visual word-set P forms some random and sporadic

patterns, which can be approximated by docfreq(P −)
T

. freq(P )

is the frequency of visual phrase P . Intuitively, we want
to penalize the visual phrases whose member visual words
also frequently co-occur in a random and sporadic manner.
In this way, we enforce the correlation among member vi-
sual words, and therefore, ensure the coherency of visual
phrases.

4 Generating visual synset

Though the co-occurrence and spatial scatter information
make the image representation more distinctive, the invari-
ance power of visual words or phrases is still low and their
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effectiveness on image retrieval relies highly on the visual
similarity and regularity of images. To tackle this issue, we
propose to exploit the prior available semantic knowledge,
i.e. semantic class labels of training images and their distri-
butions, to generate a higher-level visual content unit, called
visual synset, using a supervised learning process.

4.1 Visual synset: a semantics-consistent cluster of visual
lexicons

In text literature, the synonymous words are usually clus-
tered into one synset (synonymy set) to improve the doc-
ument categorization performance [3]. Such approach in-
spires us to enhance the invariance power of visual lexicons
(visual words or phrases). However, it is infeasible to define
the semantic meaning of visual lexicon, as it is only a set
of quantized vectors of sampled regions of images. Hence,
rather than defining the semantics of a visual lexicon in a
conceptual manner, we define it probabilistically as follows.

Definition 1 Given image categories C = {ci}mi=1, the se-
mantics of a visual lexicon V (visual word or phrase) is
its contribution to the classification of its belonging image,
which can be approximately measured by P(ci |V ).

As shown in Fig. 2, the probability distribution P(ci |V )

implies the semantic inference of visual lexicon V , namely
how much V votes for each of the classes. We then define
the visual synsets as follows.

Definition 2 The visual synset is a probabilistic concept or
a semantics-consistent cluster of visual lexicons, in which
the member visual lexicons might have different visual ap-
pearances but similar semantic inferences towards the image
classes

The rationale of visual synset is that due to the visual
heterogeneity and distinctiveness of objects, a considerable
number of visual lexicons are intrinsic and highly indica-
tive to certain classes. This implies that some visual lexicons
tend to share similar probability distribution P(ci |V ), which
might peak around its belonging classes. By grouping these
highly distinctive and informative visual lexicons into visual
synsets, the visual differences of images from the same class
can be partially bridged. Consequently, the image distribu-
tion in feature space will become more coherent, regular and
stable.

4.2 Information Bottleneck principle

By formulating visual synset construction as a task of visual
lexicons clustering based on their class probability distribu-
tions, the issue now is reduced to how to measure the ‘right’

distance between these distributions, namely the similarity
metric in clustering. Pereira et al. [19] proposed to use the
relative entropy or Kullback–Leibler (KL) distance to mea-
sure the distributional similarity. The KL distance, however,
does not possess symmetry property, which is necessary for
similarity metric. To address this issue, Baker and McCal-
lum [2] proposed to utilize the average of KL divergence
of each distribution as the clustering similarity metric. Such
metric, however, focuses merely on the distributional simi-
larity but neglects the fact that clustering is also a process
of data compression (compressing a group of data into one
clustering).

Here, we propose to utilize the Information Bottleneck
(IB) principle to guide the clustering process. Given the joint
distribution P(V, C) of the visual lexicons V and image
classes C , the goal of IB principle is to construct the opti-
mal compact representation of V, namely the visual synset
clusters S, such that S preserves as much information as pos-
sible about C . In particular, the IB principle is reduced to the
following Lagrangian optimization problem to maximize

L
[
P(S|c)] = I (S; C) − βI (V;S) (5)

with respect to P(S|c) and subject to the Markov condition
S ← V ← C . The term I (S; C) measures the information
that S contains about C and βI (V;S) measures the infor-
mation loss in clustering V into S. Intuitively, (5) aims to
cluster or compress the visual lexicons into visual synsets
through a compact bottleneck, under the constraint that this
compression keeps the information about image classes as
much as possible and the information loss in the clustering
as small as possible.

The IB optimization in (5) yields the solution of: (1) the
prior probability P(S) for each visual synset cluster S ∈ S;
(2) the membership probability P(S|V ) of visual lexicon V
to its visual synset cluster S ; and (3) the visual synset dis-
tribution P(c|S) over image classes, which are specifically
defined in the equations below:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(S) = ∑
V P(S|V )P (V )

P (c|S) = 1

P(S)

∑

V
P(S|V )P (V )P (c|V )

P (S|V ) = P(S)

Z(β, V )
exp

(−βDKL
[
P(c|V )||P(c|S)

])

(6)

where Z(β, V ) is the normalization factor, β is a La-
grange parameter that determines the cluster resolution, and
DKL[P(c|V )||P(c|S)] is the Kullback–Leibler divergence
[26] between P(c|V ) and P(c|S).

There exist several implementations of IB principle.
Here, we adopt the sequential Information Bottleneck (sIB)
clustering algorithm [22] to generate the optimal visual
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synset clusters in our approach, as it is reported to outper-
form other IB clustering techniques [22]. The target princi-
pled function that sIB algorithm exploits to guide the clus-
tering process is F (S) = L[P(S|c)], as in (5). The sIB al-
gorithm takes visual synset cluster cardinality |S| and joint
probability P(V , c) as input, and starts with some initial ran-
dom clustering S = {S1, S2, . . . , SK } on V. It then simulates
the process of K-means clustering to iteratively reach a lo-
cal maximum of F (S). Specifically, the cost dF (V , S new) of
moving visual word V to a new cluster S new can be defined
as (cf. [22] for more details):

dF (V , S new) = (
P(V ) + P(S new)

)

· JS(P (c|V ),p(c|S new)) (7)

where JS(x, y) = is the Jensen–Shannon divergence [26].

4.3 Image retrieval, indexing and similarity measure

With images represented by visual synsets, we index them
by exploiting the inverted file scheme [30], due to its sim-
plicity, efficiency and practical effectiveness. The similarity
measure adopted here is the L-norm distance defined as

Sim(IQ, ID) =
(∑

i

∣∣vi(IQ) − vi(ID)
∣∣l
)1/l

, (8)

where IQ is the query image, ID is an image in the database,
vi is the ith dimension of image feature vector, and l is set
to 2 in the experiments. In retrieval, all the candidate answer
images are ranked by their similarity value with the query
image.

5 Experiments and discussion

5.1 Testing data set and experimental setup

We employ the Caltech-256 data set [16] to evaluate the pro-
posed system. The Caltech-256 data set contains 257 image
categories and a total of 30607 images. We randomly select
5 images from each class or a total of 257 × 5 = 1285 im-
ages as query images. In the phase of region sampling, each
image gives 1k to 3k sampled regions. For each region, the
SIFT [32] features are computed as region descriptor. We
then perform k-means clustering to obtain 2000 primitive
visual words in total. To discover visual phrase, we perform
FIM on the database G of approximately 3 million visual
word groups of size 8. We construct the visual lexicon code-
book of size Np by selecting the 2000 visual words and top
(Np − 2000) visual phrases with highest scores, based on
the significance score in (4). In the experiments, Np is set
to 2100, 2300, 2500, 2600, 2700, 2800, 3000 and 3200, re-
spectively.

5.2 Evaluation criteria: MAP score

The evaluation criteria here is the mean average precision
(MAP), which is the mean of average precision (AP) of each
query. The AP is the sum of the precisions at each relevant
hit in the retrieval list, divided by the total number of rele-
vant images in the collection. AP is defined as:

AP =
∑R

r=1 Prec(r) × rel(r)

T
(9)

where r is image rank, R is the total number of images re-
trieved, Prec(r) is the precision of retrieval list cut-off at
rank r , rel(r) is an indicator (0 or 1) of the relevance of
rank r , and T is the total number of relevant images in the
corpus. The average precision is an ideal measure of re-
trieval quality, which is determined by the overall ranking
of relevant images. Intuitively, MAP gives higher penalties
to fault retrievals if they have higher position in the rank-
ing list. This is rational, as in practice, searchers are more
concerned with the retrieved results in the top.

5.3 Experiments

Performance of visual lexicons We first perform the object-
based image retrieval, based on 2000 visual words. This
yields a mean average precision (MAP) of 0.026. This re-
trieval is used as the baseline of our experiments. Next, we
perform the image retrieval, based on 2100, 2300, 2500,
2600, 2700, 2800, 3000 and 3200 visual lexicons (visual
words and phrases), respectively. As shown in Fig. 4, the
performance increases as more visual lexicons are incor-
porated, up to 2500. In particular, the codebook with 2500
visual lexicons gives the highest accuracy of 0.036. This
demonstrates that by incorporating spatial co-occurrence in-
formation, the visual lexicons do carry more distinctiveness
than visual words alone. When objects share some local ap-
pearance similarity in a large scope, the visual phrase can
combine the ambiguous visual words scattered in such area
into one more distinctive unit. This can contribute to dis-
tinguishing objects of different classes with larger interclass
distance.

Fig. 4 The mean average precision (MAP) by visual words and visual
phrase on Caltech-256 data set
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Fig. 5 The mean average precision (MAP) by visual synset on Cal-
tech-256 data set

However, we also observe that when the number of lexi-
cons is above 2600, the performance drops slowly. We at-
tribute such performance degradation to the fact that the
newly incorporated visual lexicons with lesser significance
score might not be statistically substantial. Though these vi-
sual lexicons might still be distinctive patterns, their statis-
tical sparseness renders image distributions in feature space
more incoherent and brings extra noises to the retrieval.

Performance of visual synset We evaluate the effectiveness
of visual synset, by performing IB-based distributional clus-
tering on the codebook of 2500 visual lexicons (best run
from previous section). Specifically, we set the cardinality of
visual synsets |S| to 100, 400, 600, 800, 1000, 1200, 1400,
1600, and 2000. As the visual synset is a result of super-
vised learning, we select 30 images per class as the training
set. Figure 5 displays the Mean Average Precision (MAP) of
image retrievals based on different number of visual synsets.
From Fig. 5, we observe that with proper cardinality, the vi-
sual synset representation can deliver superior results over
both visual lexicons and visual words with a more compact
representation. For example, the run with only 400 visual
synsets can achieve a MAP of 0.041, which is superior to
the run with 2500 visual lexicons. This representation com-
pactness does not only enable high computational efficiency
but also alleviates the curse of dimensionality.

As summarized in Table 1, the best run is the one with
1200 visual synsets and it achieves an accuracy of 0.058.
We attribute such improvements to two factors: (1) by fus-
ing semantics-consistent visual lexicons together, the visual
synset reduces the intra-class variations and renders the im-
age distribution in feature space more coherent and manage-
able; and (2) the visual synset is a result of supervised di-
mensionality reduction and the properly reduced dimension-
ality can partially resolve the statistical sparseness problem
of visual lexicons and also enable better retrieval. Figure 7
shows some retrieval examples by words and visual synset
representation, respectively. As shown, the relevant images
retrieved by visual synset can be visually disparate, while
the images retrieved by bag-of-visual-words present local
visual similarities with query images (like black texture of
motorbike body and black regions of retrieved images). The

Table 1 The MAP accuracies of visual word, visual word & phrase,
and visual synset, respectively

Visual word Visual word & phrase Visual synset

0.026 0.036 0.058

retrieval via visual similarity can be easily spoiled by large
intra-class visual variation, as images of the same class can
be fairly distinctive from each other. On the other hand, the
visual synset utilizes such distinctiveness to group visual
word with consistent relevance to link visually different im-
ages of the same class for better retrieval performance.

However, after a detailed comparison, we find that 14
classes have visual lexicons delivering better retrieval per-
formance than visual synsets. Figure 6 shows some exam-
ple images from these classes. With close examination, we
find that the images of these classes are not visually distinc-
tive from images of other classes, either due to their clut-
tered backgrounds or nondistinctive textures and color of
objects. This leads to the lack of visual lexicons distinctive
to these classes. Consequently, these nondistinctive visual
words might be clustered together with visual lexicons in-
dicative of other classes and resulted in nondistinctive vi-
sual synsets that effectively link images of different classes
together.

We also observe that the number of visual synsets plays
an important role in its performance. A too small num-
ber of visual synsets usually gives bad performance. This
is because a small number of visual synsets will force
the distinctiveness-inconsistent visual words together and
generate noninformative and nondistinctive visual synsets.
Overall, the experimental results show that the number of
visual synsets between 1/3 and 2/3 of visual lexicon code-
book size usually gives a reasonably good performance.

6 Related work

Liu et al. [17] provided a thorough survey on the litera-
ture of image retrieval systems, such as QUIB [7], Blob-
World [4], SIMPLcity [28], visualSEEK [23], Virage [10]
and Viper [25], etc. The image representation for previous
image retrieval systems can be generally classified into 2
types: (1) image-based or grid-based global features like
color, color moment, shape or texture histogram over the
whole image or grid [7]; and (2) part-based bag-of-words
features extracted from segmented image regions, salient
keypoints and blobs [4, 12, 23, 24, 33]. The main drawback
of global features is their sensitivity to scale, pose and light-
ing condition changes, clutter and occlusions. On the other
hand, the part-based bag-of-visual-words approach is more
robust, as it describes an image based on the statistics of lo-
cal region descriptors (visual words). However, as discussed
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Fig. 6 Example images of
classes in which the visual
synset yields inferior retrieval
performance

Fig. 7 Example images retrieved based on visual words and visual synsets

in the Introduction, the bag-of-words approach suffers from
the discrimination and invariance issues.

To improve the bag-of-words approach, many researchers
have proposed various systems. Lazebnik et al. [15] pro-
posed a spatial pyramid model to incorporate spatial infor-
mation hierarchically. Agarwal and Triggs [1] proposed a
hyperfeature to code the local visual information in a multi-
resolution way. To address the discrimination or polysemy
issue of visual words, Juan et al. [31] and Quack et al. [20]
proposed visual phrase, i.e. frequently co-occurring visual
and spatial configurations.

The performance of primitive visual words and phrases,
however, depends highly on visual similarity and regular-
ity. To mitigate such problem, Sivic et al. [21] proposed
to model images with some higher-level latent topic fea-
tures by exploiting probabilistic Latent Semantic Analysis
(pLSA) and Latent Dirichlet Allocation (LDA). Agarwal
and Triggs [1] also demonstrated the effectiveness of LDA in
image classification. pLSA and LDA are similar to the pro-
posed visual synset in the way that they are all some kind of
intermediate features derived from primitive visual lexicons.
However, the proposed visual synset is different from pLSA
and LDA in two major aspects.
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First, the proposed visual synset is not a latent or hidden
semantic variable that connects visual lexicons and image
semantics. pLSA assumes a set of latent topic variable to tie
up documents/images and words, while LDA treats a latent
topic as a multimonial distribution over words and the mix-
ture of latent topics per document/image [21]. The Markov
condition in pLSA and LDA is to be V ← S ← C [26],
where S denotes the latent topic variable. On the contrary,
the visual synset is the result of compressing visual lexicons
via distributional clustering based on IB principle. Thus, it
is only conditional on visual lexicons, which follow the joint
distribution of visual lexicons and image classes. Conse-
quently, the Markov chain condition here is S ← V ← C ,
where S denotes visual synset variable.

Second, the visual synset is not a generative model. In-
stead, both pLSA and LDA are unsupervised processes that
assume the document/image is a mixture of hidden topics
and the word generation in document/image follows some
latent topic assignments. The performance of such genera-
tive model, however, relies highly on the co-occurrence of
latent topic and image semantics observation. Rather than
assuming any topic mixture generative model, our proposed
visual synset is the result of supervised data-mining on im-
age class probability distributions. It is therefore expected to
be more robust than pLSA and LDA.

7 Conclusion

In order to retrieve images beyond their visual appearances,
we proposed a higher level image feature, visual synsets,
for object-based image retrieval. First, we exploit the spa-
tial co-occurrence information of visual words to generate a
more distinctive visual configuration, i.e. visual phrase. This
improves the discrimination power of visual word represen-
tation with better interclass distance. Second, we proposed
to group the visual words and phrases with similar ‘seman-
tic’ into a visual synset. Rather than in a conceptual man-
ner, the ‘semantics’ of a visual phrase is probabilistically
defined as its image class probability distraction. The visual
synset is therefore a probabilistic relevance-consistent clus-
ter of visual phrases, which is learned by Information Bot-
tleneck based distributional clustering. The effect of visual
synset is to reduce the intra-class variations. The testing on
Caltech-256 data set demonstrated that the proposed image
representation can achieve good accuracies for object-based
image retrieval.

Several open issues remain. First, the generation of visual
phrase is a time-consuming task. A more efficient algorithm
is demanded. Second, the questions as how the number of
classes changes the semantic inference distribution of visual
lexicons and how this affects the visual synset generation
and final classification, have not been investigated.

References

1. Agarwal, A., Triggs, W.: Hyperfeatures—multilevel local coding
for visual recognition. In: ECCV International Workshop on Sta-
tistical Learning in Computer Vision (2006). http://lear.inrialpes.
fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.pdf

2. Baker, L., McCallum, A.: Distributional clustering of words for
text classification. In: Croft, W.B., Moffat, A., van Rijsbergen,
C.J., Wilkinson, R., Zobel, J. (eds.) Proceedings of ACM SI-
GIR, pp. 96–103. Melbourne, AU (1998). citeseer.ist.psu.edu/
baker98distributional.html

3. Bekkerman, R., El-Yaniv, R., Tishby, N., Winter, Y.: Distributional
word clusters vs. words for text categorization. J. Mach. Learn.
Res. G 3, 1183–1208 (2003)

4. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Im-
age segmentation using expectation-maximization and its applica-
tion to image querying. IEEE Trans. Pattern Anal. Mach. Intell.
24(8), 1026–1038 (2002)

5. Dance, C., Willamowski, J., Fan, L., Bray, C., Csurka, G.: Visual
categorization with bags of keypoints. In: Proceedings of ECCV
Workshop on Statistical Learning in Computer Vision (2004)

6. Donoser, M., Bischof, H.: Efficient maximally stable extremal re-
gion (MSER) tracking. In: Proceedings of Conference on Com-
puter Vision and Pattern Recognition, pp. 553–560 (2006)

7. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W.,
Petkovic, D., Equitz, W.: Efficient and effective querying by image
content. J. Intell. Inf. Syst. 3(3/4), 231–262 (1994)

8. Griffin, A.H., Perona, P.: Caltech-256 object category dataset.
Tech. rep., California Institute of Technology (2007)

9. Grauman, K., Darrell, T.: The pyramid match kernel: dis-
criminative classification with sets of image features. In: Pro-
ceedings of International Conference on Computer Vision, pp.
1458–1465. IEEE Computer Society, USA (2005). http://dx.doi.
org/10.1109/ICCV.2005.239

10. Gupta, A., Jain, R.: Visual information retrieval. Commun. ACM
40(5), 70–79 (1997). http://doi.acm.org/10.1145/253769.253798

11. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Cur-
rent status and future directions. Data Min. Know. Discov. 14(1)
(2007)

12. Jing, F., Li, M., Zhang, L., Zhang, H., Zhang, B.: Learning in
region-based image retrieval. In: CIVR, pp. 206–215 (2003)

13. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recog-
nition. In: Proceedings of International Conference on Computer
Vision. Washington, DC, USA (2005). http://dx.doi.org/10.1109/
ICCV.2005.66

14. Kadir, T., Brady, M.: Saliency, scale and image description.
Int. J. Comput. Vis. 45(2), 83–105 (2001). http://dx.doi.org/
10.1023/A:1012460413855

15. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spa-
tial pyramid matching for recognizing natural scene categories.
In: Proceedings of Conference on Computer Vision and Pattern
Recognition, pp. 2169–2178. Washington, DC, USA (2006)

16. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models
from few training examples: an incremental Bayesian approach
based on 101 object categories. In: Proceedings of CVPR Work-
shop. Washington, DC, USA (2004)

17. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-
based image retrieval with high-level semantics. Pattern Recog-
nit. 40(1), 262–282 (2007). doi:10.1016/j.patcog.2006.04.045.
http://dx.doi.org/10.1016/j.patcog.2006.04.045

18. Lowe, D.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 20, 91–110 (2003).

19. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of Eng-
lish words. In: Proceedings of ACL, pp. 183–190. Morristown, NJ,
USA (1993). http://portal.acm.org/citation.cfm?id=981598

http://lear.inrialpes.fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.pdf
http://lear.inrialpes.fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.pdf
http://citeseer.ist.psu.edu/baker98distributional.html
http://citeseer.ist.psu.edu/baker98distributional.html
http://dx.doi.org/10.1109/ICCV.2005.239
http://dx.doi.org/10.1109/ICCV.2005.239
http://doi.acm.org/10.1145/253769.253798
http://dx.doi.org/10.1109/ICCV.2005.66
http://dx.doi.org/10.1109/ICCV.2005.66
http://dx.doi.org/10.1023/A:1012460413855
http://dx.doi.org/10.1023/A:1012460413855
http://dx.doi.org/10.1016/j.patcog.2006.04.045
http://dx.doi.org/10.1016/j.patcog.2006.04.045
http://portal.acm.org/citation.cfm?id=981598


22 Y.-T. Zheng et al.

20. Quack, T., Ferrari, V., Leibe, B., Van-Gool, L.: Efficient mining of
frequent and distinctive feature configurations. In: ICCV (2007).
http://lear.inrialpes.fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.
pdf

21. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman,
W.T.: Discovering object categories in image collections. In: Pro-
ceedings of the IEEE International Conference on Computer Vi-
sion (ICCV) (2005)

22. Slonim, N., Friedman, N., Tishby, N.: Agglomerative multi-
variate information bottleneck. In: Advances in Neural Infor-
mation Processing Systems (NIPS) (2001). citeseer.ist.psu.edu/
article/slonim01agglomerative.html

23. Smith, J.R., Chang, S.F.: Visualseek: a fully automated content-
based image query system. In: Proceedings of the ACM Interna-
tional Conference on Multimedia, pp. 87–98. ACM, New York,
NY, USA (1996). http://doi.acm.org/10.1145/244130.244151

24. Squire, D., Muller, W., Muller, H., Raki, J.: Content-based query
of image databases, inspirations from text retrieval: inverted
files, frequency-based weights and relevance feedback (1999).
citeseer.ist.psu.edu/squire98contentbased.html

25. Squire, D., Muller, W., Muller, H., Raki, J.: Content-based query
of image databases, inspirations from text retrieval: inverted
files, frequency-based weights and relevance feedback (1999).
citeseer.ist.psu.edu/squire98contentbased.html

26. Tishby, N., Pereira, F., Bialek, W.: The information bot-
tleneck method. In: Proceedings of Allerton Conference on
Communication, Control and Computing, pp. 368–377 (1999).
citeseer.ist.psu.edu/tishby99information.html

27. Wallraven, C., Caputo, B., Graf, A.: Recognition with local fea-
tures: the kernel recipe. In: Proceedings of International Confer-
ence on Computer Vision, p. 257. IEEE Computer Society, Nice,
France (2003)

28. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-
sensitive integrated matching for picture LIbraries. IEEE Trans.
Pattern Anal. Mach. Intell. 23(9), 947–963 (2001). citeseer.ist.
psu.edu/wang01simplicity.html

29. Willamowski, J., Arregui, D., Csurka, G., Dance, C., Fan, L.: Cat-
egorizing nine visual classes using local appearance descriptors.
In: Proceedings of ICPR Workshop on Learning for Adaptable Vi-
sual Systems (2004)

30. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes:
Compressing and Indexing Documents and Images.
Morgan Kaufmann, San Francisco (1999). citeseer.ist.
psu.edu/witten96managing.html

31. Yuan, J., Wu, Y., Yang, M.: Discovery of collocation patterns:
from visual words to visual phrases. In: Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining
(2007)

32. Zhang, J., Marsza, M., Lazebnik, S., Schmid, C.: Local features
and kernels for classification of texture and object categories: a
comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007).
http://dx.doi.org/10.1007/s11263-006-9794-4

33. Zheng, Q.F., Wang, W.Q., Gao, W.: Effective and efficient
object-based image retrieval using visual phrases. In: Proceed-
ings of ACM International Conference on Multimedia, pp.
77–80. Santa Barbara, CA, USA (2006). http://doi.acm.org/
10.1145/1180639.1180664

34. Zheng, Y.T., Zhao, M., Neo, S.Y., Chua, T.S.: Visual synset:
towards a higher-level visual representation. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, Alaska, USA (2008)

Yan-Tao Zheng is a PhD candidate
at NUS Graduate School for Inte-
grative Sciences and Engineering,
National University of Singapore.
He received his bachelor degree
from Nanyang Technological Uni-
versity, Singapore, in 2004. He has
been awarded with MOE scholar-
ship to fully finance his undergrad-
uate studies and A*STAR scholar-
ship for his PhD studies. He also re-
ceived Tan Kah Kee Yong Inventors
Award in 2008. He served as a con-
ference program committee mem-
ber of ACM Multimedia 2008 SP

Content Track, CIVR 2008 Special session, PCM 2008 and MMM
2009. His research interest is in video and image semantic understand-
ing, which relate to both the field of computer vision and pattern recog-
nition.

Shi-Yong Neo is a PhD candidate at
computer science department in the
National University of Singapore.
His research interests include news
video retrieval, interactive video re-
trieval and mobile multimedia con-
tent processing. He is a scholar un-
der Singapore Millennium Founda-
tion since 2005 and has won a num-
ber of awards including the Tan Kah
Kee Young Inventors Award.

Tat-Seng Chua is the Professor at
the School of Computing, National
University of Singapore. He was the
Acting and Founding Dean of the
School of Computing from 1998 to
2000. He spent three years as a re-
search staff member at the Institute
of Systems Science (now I2R) in
late 1980s. His main research in-
terest is in multimedia information
processing, in particular, on the ex-
traction, retrieval and question an-
swering (QA) of video and text in-
formation. He focuses on the use
of relations between entities and ex-

ternal information and knowledge sources to enhance information
processing. His current projects include: news video retrieval and
tracking, question answering (QA), video QA, and information extrac-
tion on the web. His group participates regularly in TREC-QA and
TRECVID news video retrieval evaluations. He obtained his PhD from
the University of Leeds, UK.
Dr. Chua is active in the international research community. He has or-
ganized and served as program committee member of numerous in-
ternational conferences in the areas of computer graphics, multimedia
and text processing. He is the Conference Co-Chair of CIVR’2005,
ACM Multimedia 2005, and ACM SIGIR 2008. He serves in the edito-
rial boards of: The Visual Computer (Springer-Verlag) and Multimedia
Tools and Applications (Kluwer). He is the member of Steering Com-
mittee of Computer Graphics Society (Geneva), and Multimedia Tools
and Applications (international), and in Review Panel to a Research

http://lear.inrialpes.fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.pdf
http://lear.inrialpes.fr/pubs/2006/AT06b/Agarwal-Triggs-eccv06.pdf
http://citeseer.ist.psu.edu/article/slonim01agglomerative.html
http://citeseer.ist.psu.edu/article/slonim01agglomerative.html
http://doi.acm.org/10.1145/244130.244151
http://citeseer.ist.psu.edu/squire98contentbased.html
http://citeseer.ist.psu.edu/squire98contentbased.html
http://citeseer.ist.psu.edu/tishby99information.html
http://citeseer.ist.psu.edu/wang01simplicity.html
http://citeseer.ist.psu.edu/wang01simplicity.html
http://citeseer.ist.psu.edu/witten96managing.html
http://citeseer.ist.psu.edu/witten96managing.html
http://dx.doi.org/10.1007/s11263-006-9794-4
http://doi.acm.org/10.1145/1180639.1180664
http://doi.acm.org/10.1145/1180639.1180664


Toward a higher-level visual representation for object-based image retrieval 23

Institute in Europe. In the industry front, Dr. Chua serves as Chair of
Board of Assessor of Certified IT Project Management (CITPM) and
Certification in Outsourcing Management for IT (COMIT), and as In-
dependent Director of several listed companies in Singapore.

Qi Tian is a principal scientist at In-
stitute for Infocomm Research, Sin-
gapore. His main research interests
are image/video analysis, indexing
and retrieval, computer vision, pat-
tern recognition. He has BS and
MS from the Tsinghua University,
China, PhD from the University of
South Carolina, USA.
He joined the Institute of System
Science, National University of Sin-
gapore, in 1992, he was the Program
Director for the Media Engineering
Program at the Kent Ridge Digital
Labs, then Laboratories for Infor-

mation Technology in 2001–2002. He is a senior IEEE member, and
has served and serves on editorial boards of professional journals, and
as chairs and members of technical committees of the IEEE Pacific-
Rim Conference on Multimedia (PCM), the IEEE International Con-
ference on Multimedia and Expo (ICME), etc.


	Toward a higher-level visual representation for object-based image retrieval
	Abstract
	Introduction
	Discrimination issue
	Invariance issue

	Overview
	Region extraction based on extremal scale saliency

	Constructing visual phrase
	Mining frequently co-occurring visual word-sets
	Unique counting of maximal visual word-set
	Statistical significance measure

	Generating visual synset
	Visual synset: a semantics-consistent cluster of visual lexicons
	Information Bottleneck principle
	Image retrieval, indexing and similarity measure

	Experiments and discussion
	Testing data set and experimental setup
	Evaluation criteria: MAP score
	Experiments
	Performance of visual lexicons
	Performance of visual synset


	Related work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


