
Detecting and Partitioning of Data Objects in Complex Web Pages

Shiren Ye and Tat-Seng Chua
School of Computing, National University of Singapore, Singapore 117543

{ yesr |chuats }@comp.nus.edu.sg

Abstract

This paper presents an automated approach to detect and
partition useful data objects from complex Web pages.
First, we derive the common structure of the pages by
comparing similar pages from the same Web site. Second,
we identify data region covering the descriptions of data
objects by removing the irrelevant contents from the Web
page. Third, we partition the nodes belonging to different
data objects in the data region and construct the well-
formatted and self-explainable XML output files, one for
each data object. From the resulting output files, it is then
easy to extract data to fill a database or form a template
for presentation to the users. The experiments indicate
that our technique is effective.

1. Introduction

More and more companies manage their business and
publish their products and services on the Web.
Collecting and organizing these dynamic information
could produce the data for various value-added
applications. Scenario of such applications include: (a)
collating and comparing the prices and features for
different products from the Web sites of different
companies; and (b) listing all products and services
offered by one or a group of companies. To facilitate such
applications, we need tools to extract attribute
information of each product (called data object) within a
region (called data region) in the product Web page.
Typically, a product Web page contains one data region,
and each region lists information of one or more data
objects.

The characteristics of such web pages from
commercial sites are:
1. There are many diverse sites with pages in different

formats and styles.
2. There are many irrelevant components intertwine with

the descriptions of data objects in Web pages. In order
to attract the attention of the users, the designers of
Web sites often include many exciting items as shown
in Fig. 1 to entice users to browse their pages and stay
at their sites for as long as possible. Those items
include ads bar, product category, search and filtering
panel, navigator bar, copyright statement, feedback
form etc.

3. In many Web pages, there are normally more than one
data object entwined together in a data region.
Furthermore, the raw source of the Web page for
depicting the object might be non-contiguous. So it is
difficult to discover the attributes for each object if they
are enwound by the description of others.

4. The order, number and format of attributes involved in
depicting the same data object may vary greatly in
different pages from different sites. The available
systems might fail when they encounter pages from
new sites.

Fig. 1: The layout of a typical product description page

In this paper, we call such Web page as shown in Fig.
1 a complex Web page as it contains multiple types of
data components. In real applications, what the users
want from complex Web pages is the description of
individual data object. It can be derived from the
partitioning of data region. The users can then properly
process these separate data objects.

Based on the above observations, hand-coded rules or
many reported wrapper systems cannot achieve good
performance on these complex pages coming from real
application sites. Since such pages are generated by the
same dynamic program or carefully maintained template,
they share similar structure. It is therefore possible to
unveil such common structure by analyzing pages form
the same site, and use this knowledge as the basis to
remove irrelevant contents while retaining relevant object
information in data region.

This paper aims to extract and present the details of
data objects contained in the Web pages using XML

Advertisement Bar

D
irectory

Search and Filtering Panel

Data Region

Data Object 1 Data Object 2

Copyright statement

format. The output file, containing the corresponding
description of the raw sources without irrelevant
components, is well-structured and understandable. It is
of high quality for human and software agents to process.
The description of an object just appears in one file, and
all XML output files have similar structure. So it is easy
to transform them into tables or templates.

To achieve our aim of extracting and presenting data
objects from complex Web pages, the first crucial
problem is to detect the data region that contains the
desired objects. Secondly, we need to mine the structure
of the data region to extract the structure and description
of individual data object.

Briefly, the contents of this paper are organized as
follows. Section 2 introduces related work and Section 3
presents the overall procedure for detecting and partition
data objects from complex pages. Sections 4 and 5
respectively present the algorithms for detecting data
region and partitioning data objects. The results of our
experiments and conclusions are respectively presented in
Sections 6 and 7.

2. Related work

Extracting and integrating information from the Web
has become more and more important recently because it
helps to tackle an urgent business problem of collating,
comparing and analyzing business information from
multiple sites. Related works to our study include
Information Extraction (IE), Data Integration and Web
page cleaning. Many researchers have focused on such
problems. We briefly discuss some of them below.

As a series of widely used IE techniques, wrapper
methods [2] use a program that extracts data from Web
pages and store them in a database. The wrapper could be
generated either by human or learned from labeled data,
both of which are labor intensive and time consuming.
Moreover, the generalization of wrapper is limited when
it uses the HTML tags to represent the rule. It also lacks
the ability to extend to diverse sites with different
representation styles.

Some researches try to mine the data in the Web pages
automatically [1][3][4][5] using unsupervised learning
approaches such as clustering and grammar induction, or
heuristic rules. Most of these techniques require well-
formatted tables, and at least two data objects (records)
appearing in a page. So their function is largely similar to
table detection and data extraction from tables. But our
study tries to handle more complicated cases, namely, the
representation of data objects represented in table,
(nested) listing and text fragment surrounded by HTML
tags, and any number of data objects exist in the pages.

Web page cleaning is another crucial task in Web
mining. It is used to identify the redundant, useless or
irrelevant components (e.g., ads bar and category) in

which users are not interested. Current research used
priori knowledge or supervised learning to detect frequent
templates [6], coherent content blocks [7] and site style
tree [8] tied to this task. Here we emphasize the
development of an automated approach to detect the
important portion (data region) rather than to eliminate
these unimportant components in the complex pages.

3. Our Approaches

The key function involved in our technique is how to
evaluate the similarity among the components in the
pages and through which, partition out the descriptions of
data objects. Obviously, string matching and the “bags of
words” techniques cannot be used to identify irrelevant
contents and partitioning objects. Although the task
seems complex, we rely on the following observations to
accomplish our goals.
a. In the same Web site, we observe that pages about the

objects in the same category, such as products, services
and member listings, always have similar representation
structure and similar irrelevant contents. This is
because in most such cases, they are produced by the
same dynamic programs or templates that are carefully
maintained by the developers. Thus we could make use
of the stable representation structure of the pages that
we are investigating to identify useful contents.

b. If we ignore the title of the pages, we expect the data
region to appear in contiguous area, both visually on
the screen and in raw source of Web pages. However,
although the description for each data object is visual
contiguous, the raw source of such objects might not be
contiguous.

c. If we compare similar pages from the same site using
HTML elements as the unit of measure, we found that
most of the content differences appear in the data
region, because that are used to describe different data
objects with different attribute values. Thus by
choosing the right content features, we should be able
to make the structure corresponds to data regions from
different pages to be different, while identifying
irrelevant components as similar. This is because the
frequency of different elements appearing in irrelevant
components is quite low as compared to that in the data
regions.

Suppose that the users used the spiders to download
all the pages from the special site, or collected all the
pages from the service providers. We denote this set of
Web pages as PSET. The steps involved in extracting data
objects (or product descriptions) are as follows.
a. We first identify a page Pi that is most similar to the

user’s query on products or services.
b. We extract the DOM structures [13] of all the pages

and use that as the logical structures to compare the

similarities of Web pages. We simply extract the text
fragments at the node of the DOM structure.

c. We use the tree-based kernel [9, 10, 11] to evaluate the
distance between the Web pages, since the tree-based
kernel could reflect the similarities in both the structure
and content. We select any page pj from PSET and
calculate the kernel K(pi, pj). Because the pages similar
to pi are created by the same dynamic program or
template, they should have similar structure and share
many common tags among the nodes. Thus, it is not
difficult to setup the threshold τ for similar page
selection. The set of the pages similar to pi is:

 }),(|{ τ>∈= jiSETjSIM ppKPpP (1)

d. We calculate the novelty value to be described in next
section for each subtree in the parse trees of similar
pages. The novelty of a subtree is defined as the
weighted sum of all the nodes in the corresponding tree
and could reflect the degree of repetition among PSIM.
The data region is the subtree that has the maximal
novelty (or lowest repeatability) since they have
distinctive descriptions about different objects.

e. We detect the structure representation (see Fig. 2)
within the data region. If there is more than one object
involved, we need to partition them into different data
objects and output as different XML files as described
in Section 5.

4. Detecting Data Region among the Pages
4.1 Features of data region

We first generate the HTML parse tree from the raw
source of the Web page based on the HTML elements
embedded in the hierarchical structure, where each node
in this tree is an elements. Data region is then a subtree
that contains the description of the desired objects. For
example, the technical features about the vending
notebooks, a table listing of staff, and stock information
etc. The characteristic of the data region is that it is
typically the largest contiguous region in the Web page
having distinct tokens that are used to depict distinctive
objects. So we define the concept of repeatability for
nodes and subtrees in the parse trees in order to identify
data regions.

Here we use a converse measure approach, the
repetition degree, to estimate the novelty. This
repeatability measure is similar in concept of the kernel
method. We try to get the most similar node which lies in
similar context. Here, similar node means that they share
content tokens and attributes of HTML elements; and
similar context is simplified as having similar parents.

4.2 Formalization

Definition 1: The content similarity of Nodes n1 and n2
is defined as the weighted ratio of their shared tokens and
attribute tags in HTML elements. Supposed that the
tokens and attributes for n1, n2 are t1, t2, and a1, a2
respectively, note that the number of tokens and attributes
are denoted by |.|; and the number of shared attributes is
s(a1, a2). So the similarity of n1 and n2 is

||||
),(

),()1)||||(log(),(

21

21
1

212121

aa
aasw

ttsttnnSim

⋅

++=
 (2)

Here, w1 is the weight of the shared attributes and is set to
1 in our study ||||),(2121 aaaas represents the ratio
of shared attributes or the proportion of common HTML
tags in nodes n1, n2.)1)||||(log(21 +tt gives the
coefficient of shared tokens),(21 nns which has larger
value when the number of similar tokens is higher.

),(21 nns is the similarity of tokens defined as:

otherwise

typesamethetobelongttif

matchingstringinidentialisttfi
tts 2,1

21

0
5.
1

),(21

−=

⎪
⎩

⎪
⎨

⎧
= (3)

Here t1 and t2 belonging to the same type means that are
of same semantic type such as number, currency, e-mail
and so on.
Definition 2: Supposed that nodes n1 and n2 (not roots)
are in parse trees T1 and T2 respectively, the Repeatability
of n1 with respect to T2 is

)))(),((

),((max),(

12

1)(21
2

nparentnparentsimw

nnsimTnR
Tnodesn

⋅

+=
∈∀ (4)

where parent(.) denotes the parent node of n; and w2
reflects the influence from the context of nodes n1 and n2,
which is set to 0.5 in our system.

Two sub-trees have high repeatability if they are similar
in both contents and context (or structure).
Definition 3: If ST1 is a subtree in parse tree T1, the
Repeatability of ST1 with respect to T2 is

)1|(|1

||),()),((

||1

|)|),(()),((
),(

13

2321

3

2321

21

−⋅+

⋅⋅+
=

⋅+

⋅⋅+
=

∑
∑
∑

STw

STTSTRwTSTrtR

Stw

STTSTRwTSTrtR
TSTR

xx

x

xx

 (5)
where rt(T) denotes the function of tree T; and STx is the
child node of rt(ST1). R(STx, T2) is calculated recursively
based on Formula (5). w3 (set to 1 here) gives the
contribution of the repeatability from the children of the
root. R(ST1, T2) is the average Repeatability of the nodes
involved.

Repeatability of subtree and other parsing trees is used
to identify and remove redundant components in complex
product pges, as such irrelevant components tend to be

similar. In order to avoid the cases where some data
objects sharing many similar descriptions that will
increase the repeatability of the data region, we will
consider a group of N (i.e. N = 3-5) pages (called
window) when evaluating the repeatability of the
subtrees. We randomly select N pages from PSIM and
compute the average repeatability of their corresponding
parse trees as the final evaluation measure as.
Definition 4),()(1

)(
1 TnRavgnR

N

PTreeT SIM∈
= (6)

The largest subtree ST1 covering the novel data region
should have the smallest repeatability. So we need to find
the larger subtree that has smaller repeatability. This
subtree always contains all nodes about the data objects
with novel vocabulary. We could use
(log(|ST1|)+1)/R(ST1) to achieve this objective. The
subtree ST1 with the largest (log(|ST1|)+1)/R(ST1) will be
the data region.
Definition 5: Data region for parse tree T1 DR(T1) is

)(
1|)log(|maxarg)(

1

1
i

i

TST STR
STTDT

i

+=
⊆

 (7)

Note that the use of log(.) function is used to remove the
influence of very large subtree with many nodes.

Here we briefly discuss the rationale of the above
formulae. Supposed that ST1 is the right data region and
there is a subtree ST2 rooted at the next level of ST1 that
has the largest (log(|ST2|)+1)/R(ST2). ST2 could then be
wrongly considered as the spurious data region. However,
there should be at least one sibling subtree of ST2, has
small repeatability also. Thus all of them would
contribute to low repeatability to their parent ST1, and this
would cause ST1 to have the largest (log(|ST1|)+1)/R(ST1)
than others. On the contrary, if there is no such sibling
subtree of ST2 that has low repeatability, it means that
other nodes in {ST1-ST2} do not contain the description
about the data objects. Hence ST2 being the data region is
reasonable.

4.3 Algorithm

Based on the above discussion, we design an algorithm
to detect data region as follows. The computation cost is
N*|T|2, where N is the length of window, |T| is the number
of nodes in the parse tree.

GetDataRegion(Current_Parsing_Tree T0,
Parsing_Tree_Set {T}, window_size N)

{
1. Randomly select N trees T1, …, TN from {T};
2. For each (node ni in nodes(T0))
3. {
4. Calculate R(ni, Tk), k=1, …N;

5. R(ni) =
N

TnR
N

k
ki∑

=1

),(

6. Recursively calculate the repeatability for
subtrees rooted at ni;

7. }
8. Return the subtree having the largest

(log(|ST1|)+1)/R(ST1).

5. Partitioning Objects in Data Regions
5.1 The Data Object Representation Structure

There are five typical representation structures for
objects as shown in Fig. 2. Of course, some pages may
contain a combination of the above structures, such as a
horizontal tabular structure (2b) embedded in a listing
structure (2c) for a person’s CV. But the fundamental
organization in the data region usually uses only one type
of representation. This is true especially when the
contents in the data region are dynamically generated by
the dynamic programs in most commercial sites.

 CPU HD Screen
Satellite 1000 PIII 800M 20G 14.1
Satellite 3000 PIII 1.5G 40G 14.1

(a) Horizontal tabular structure

 Satellite 1000 Satellite 3000

CPU PIII 800M PIII 1.5G
HD 20G 40G
Screen 14.1 14.1

(b) Vertical tabular structure

Toshiba 1000
 - CPU PIII 800M
 - HD 20G
 - Memory 256M

- Screen 14.1

Toshiba 3000 (optional)
 - CPU PIII 1.5G
 - HD 40G
 - Memory 512M

- Screen 14.1

(c) (Nested) List

Toshiba 1000 CPU PIII 800M; HD 20G;
Memory 256M; Screen 14.1

(d) Fragment structure

Toshiba 1000, 256 MB PC2100 DDR RAM up to
2048MB….

(e) Sentence

Fig. 2: Typical representation of extracted objects

If a set of objects are represented in many pages with
different structures, it is difficult to compile some general

wrappers to extract information from them. Typical
wrapper rules such as “Country <I>Code</I>”
induced by CCWRAP [2] from one site would likely to
fail on other sites since the formats of pages in the
unknown sites are likely to be different. But if we are able
to separate data objects belonging to different products, it
would simplify the task of extracting detailed attributes of
such objects.

5.2 The Output Structure

Actually, not all nodes in the data region have low
repeatability. Some nodes appearing in the similar
location among the trees that have high repeatability
could help to reveal the framework for depicting the
objects. For example, the nodes such as “CPU” and “HD”
would repeat again and again and thus have high
repeatability. We call those nodes Attribute Names about
the data objects, since they provide the right attribute
names to tag the descriptions in the other nodes near
them. If we use XML to output the result of one data
object, it could be.

<Object>
<Title>Satellite 1000</Title>
<CPU> PIII 800M</CPU>
<HD>40G</HD>

</Object>
Here Title is the object name. We compose the pair of

attribute name and its description as entity in XML for
visualization and usage convenience. If there is only one
object in the data region, the title might be located in
HTML tags <title> or <H1>.

This XML output is self-explainable and flexible. All
XML output files from these similar pages will have the
same structure. Many software agents could efficiently
process it.

5.3 Algorithm for Object partition

If there is only one object involved in a data region,
the transformation from data region to XML output is
straight-forward. When multiple objects appear in the
data region with one of the typical organization styles as
shown in Fig. 2, we employ the divide and conquer
strategy with heuristic knowledge to detect the number of
data objects in each data region as follows.
 Tabular structure. We first use the method reported in

[12] to regulate the unified cell tagged by
“Colspan=n” or “Rowspan=n”. We compare the
coordinates of cells in each column and each row.
Since the same attributes about different object will be
aligned either vertically or horizontally in display, we
could use the coordinate values to determine whether
it is the horizontal or vertical tabular structure. If the
average similarity among the nodes in each column is
greater than that among the nodes in each row, it

means that it is the vertical representation structure.
For vertical structure, we simply compare the first
column with the other columns, and verify whether the
cells in the first column are about the proper attribute
names or general attribute values. The steps for
constructing data objects in horizontal tabular
structure are similar.

 (Nested) Listing structure. In order to find out whether
it contains only one object or a set of neighbouring
objects, we need to investigate the repetition within
the data region. If we can find similar sub trees that
cover most of the data region, they will be used to
generate different data objects. Otherwise, we
consider the whole data region as one object and
hence one XML output file will be generated.

 Fragment and Sentence structures. We assume that
such region contains only one object. We parse the
whole fragment as an entity in an XML output file.

 Compound structure. It is the combination of the
above cases. It is usually maintained by human being.
Fortunately for such intricate type, there is usually
only one object involved in most cases. Our strategy is
simply to parse the entire parse tree into an XML file.

The following is the pseudo codes for partitioning
objects in the data region. Here t1 is the threshold for
selecting the candidates of attribute names; and t2 is the
threshold for differentiating the objects in listing
structure. The maximal computation happens in the
detection of direction in the tabular structure. We need to
compare all cells in each column and each row, so the
computation cost is |T0|3.

PartitionObject(Current_Data_Region_Tree T0,
threshold t1, t2)

{
1. Foreach (node ni in nodes(T0))
2. { if (R(ni)) > t1)
3. { Tag ni as attribute_name;}
4. }
5. if (T0 is tabular structure)
6. {
7. Regulate the table;
8. Detect the tabular representation direction --

vertical or horizontal;
9. Combine the pair of corresponding cell and attribute

name as an XML elements;
10. Parse the first column or row as title;
11. }
12. else if (T0 is listing) //one object in this case also
13. {
14. For each (node ni in the second layer nodes of T0)
15. {
16. Calculate the inner repeatability R(ni, T0);
17. if (R(ni, T0) > t2)
18. {Parse the subtree rooted at ni as XML output;}

19. else //only one object
20. {Parse T0 as XML output; break;}
21. }
22. }
23. else //other structure
24. { Parse T0 as XML output; }
}

6. Experiment and Discussion

Our experiments try to detect and partition data object
from complex pages about products, such as technical
data for “satellite PC”. This is the questions frequently
asked in real applications and the users expect
comprehensive answers involving tabulated results from
multiple sites.

As this is a new area, it is hard to find a publicly
available test corpus to test our technique. Current
available corpora on faculty category, product category,
and search snapshot are relatively well-structured with
simple contents. Moreover, they assume fixed answer
template. In this research, we expect to extract detailed
object level information (e.g. personal detail) rather than
just category level information (faculty category) with
unknown template structure. For these reasons, we need
to build our own set of test corpus, comprising more
abundant contents in product information. We therefore
collected pages regarding notebooks and computers from
different retailers and review sites as listed in Table 1.
From these sites, we selected 100 pages (with at least 10
pages from each site) that contain detailed descriptions of
the target objects. About 90% of pages present product
information in the form of tabular or list structures, while
the rest present products in the form of text fragments or
sentences.

Table 1: Sites for downloading product pages
http://www.pcworld.com/reviews/chart_test_report
http://sg.hardwarezone.com/priceguide/cat.php
http://www. amazon.com
http://www.gateway.com/home/products
http://www.csd.toshiba.com/cgi-
bin/tais/pc/pc_home.jsp?comm=ST
http://list.auctions.shopping.yahoo.com/23336-
category.html?alocale=0us
http://www.nextag.com/Notebooks~
300359z0zBwzmainz5-htm

For each Web page, we built the parse trees using the
HTML DOM [13]. The kernel method for retrieving
similar pages from the same site could achieve quite high
performance. This is because there are high similarities
between the pages produced by the same program, and
they are very dissimilar to other pages that are hand-
coded or derived from different programs. Because of the
limitation of paper length, here we focus only on

evaluating the two most critical steps in our framework –
the quality of the extracted data region; and the accuracy
of partitioning the objects within the data region.

6.1 Test of Data Region Extraction

Since the data region is a subtree of the parse tree in
the corresponding page, we could evaluate the quality of
the detected data region in two aspects: (a) whether it
covers all nodes depicting the data objects; and (b)
whether it contains irrelevant components. The intuitive
approach is to compute the overlapping degree between
the test data region and the ideal data region using recall
and precision. However, because the cost of missing the
nodes about the objects is much higher than that of
covering irrelevant nodes, hence recall is more important
than precision. Fortunately, missing of data object nodes
nearly never happens in our testing, although there is
about an average of 1-6% of nodes that are not relevant to
the data objects directly. We found that this is caused by
the definition of data region. For example, if there are
three nodes a, b, and c in the second layer of the data
region, two subtrees A, B rooted at a and b are about two
data objects, but a small subtree C rooted at c contains
irrelevant content (such as a link to the promotor page).
We had to include subtree C in the proposed data region
if we want the subtree to cover A and B. This problem
only lies in the pages using listing structure, which may
be manually maintained. They do not have high quality
structure since the nodes about the data objects are not
encapsulated and mixed with irrelevant nodes. But these
irrelevant nodes are likely to be ignored in the following
object partitioning step.

We also found that the length and number of nodes in
the data region are much smaller than that in the original
Web page (reduce by an average of more than 80%) when
most irrelevant components are excluded. Here, many
large subtrees in the parse tree, such as scripts, intrinsic
data blocks, and visual elements (search panel,
advertisement bar), are eliminated since they have high
repeatability.

6.2 Test on the Partitioning of Data Objects

In the step of partitioning objects, we divide the data
regions into XML output, each corresponds to a data
object. Table 2 gives the statistics of the test corpus in
terms of the distribution of data representations and the
number of unique data objects or output files. The
performance of partitioning objects for each unique data
object is tabulated in Table 3, which shows an average F1
of 94 %. Our error analysis reveals the following sources
of errors. One typical error occurs when analyzing the
structure of raw table (vertical and horizontal tabular)
entries involving unknown attributes, which are being
used to construct spurious data object. Another source of

errors is that the system mistakenly partition one object
into many objects, where the content features of grouped
attributes are very similar to each other. The other major
source of errors is the nested list structure, as the quirky
similarity between the sub-trees might mislead
segmentations.

Table 2 Data objects distribution
Type Representation # of pages # of data object
1 Vertical Tabular 30 126
2 Horizontal

Tabular
30 87

3 Listing 30 40
4 Text Fragment 4 7
5 Sentence 5 5
6 Combined 0 0

Table 3: Performance of partitioning data objects
Tyoe Correc

t
Incor-
rect

Miss-
ing

Pre.
(%)

Recall
(%)

F1
(%)

1 126 5 0 96.2 100 98.1
2 87 9 0 90.6 100 95.1
3 34 7 6 82.9 100 90.6
4 6 3 1 66.6 85.7 79.9
5 5 5 0 100 100 100
Avg. 258 29 7 90.8 97.4 94.0

In general, we found that we are able to extract all data
from well-structured pages with no missing cases but with
some incorrect detection. This conclusion is similar to
that reported in [1] on very simple cases. Also, our
overall performance of constructing data object is near to
that of object mining and extraction reported in Omini
[14], but we could process more complicated structures
such as nested listing and fragments.

7. Conclusion

Web page content mining is the key technology in
realizing semantic Web and business intelligence. This
paper focuses on tackling the problem of detecting and
partitioning the data objects from complex Web pages,
where the presentation structure is varied and the useful
data is surrounded by many irrelevant components. Our
tests demonstrate that our system is able to correctly
partition the data objects with over 97% in precision and
over 90% in recall.

The main contributions of our research are three-fold.
First, we define the similarity measure between the nodes
and construct the Repeatability measure to evaluate the
novelty of nodes or subtrees appearing in the selected
page set. These measures can be used to effectively
reflect the essential features in the irrelevant components,
data regions, and the description framework of data
objects.

Second, we propose an automated approach to identify
the data region, which is the smallest subtree of the parse
tree covering the description of all desired data objects.
Further processing of data region is therefore free from
the interference from the irrelevant components.

Third, we investigate the algorithm for partitioning the
data objects in the data region. This algorithm could
recompose the non-contiguous description about the
different objects and produce the independent self-
explainable XML output files for the objects.

To improve the performance of our system in
processing complex pages, we need to further improve
and fine tune techniques for removing irrelevant
information from these pages, and extracting distinct data
objects from the data region. We also need to develop
larger test corpus and methodologies to test our new
framework. Finally, we would like to use this research as
the base to develop techniques to compare and reason
about product information from multiple commercial
Web sites.

References

[1] B. Liu, R. Grossman, & Y. Zhai. Mining Data Records in
Web Pages. KDD-2003.
[2] N. Kushmerick, Wrapper Induction: Efficiency and
Expressiveness, AI 118 pp15-68, 2000.
[3] K.Lerman, C. Knoblock, & S. Minton, Automatic data
extraction from lists and tables in Web sources. IJCAI-01,
Workshop on Adaptive Text Extraction and Mining, 2001.
[4] D. Buttler, L.Liu, C. Pu, A fully automated extraction
system for the World Wide Web. IEEE ICDCS-21, 2001.
[5] C-H. Chang, S-L Lui, IEPAD: Information extraction based
on pattern discovery, WWW-10, 2001.
[6] Bar-Yossef, Z. and Rajagopalan, S. Template Detection via
Data Mining and its Applications, WWW 2002, 2002.
[7] Shian-Hua Lin and Jan-Ming Ho. Discovering Informative
Content Blocks from Web Documents, KDD-02, 2002.
[8] L. Yi, B. Liu. Eliminating Noisy Information in Web Pages
for Data Mining, KDD-03, 2003.
[9] K.R. Müller, S. Mika, et al, An introduction to kernel-based
learning algorithms. IEEE Neural Networks, 12(2):181-201,
2001.
[10] M. Collins & N. Duffy, Convolution Kernels for Natural
Language, Advances in Neural Info Proc. Sys., vol(14), 2002.
[11] T. Gärtner, a Survey of Kernels for Structured Data.
Newsletter of the ACM SIGKDD. 5(1), Jul 2003.
[12] K. Shimada, A. Fukumoto & T. Endo, Information
Extraction from Personal Computer Specifications on the Web
Using a User's Request, IEICE on Information and Systems,
pp1386-1395, 2003.
[13] DOM, http://www.w3.org/TR/DOM-Level-2-HTML/ 2003.
[14] D. Buttler, L. Liu, et al. OminiSearch: A method for
searching dynamic content on the Web, ACM SIGMOD 2001.

