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Abstract 
 
This paper presents an automated approach to detect and 
partition useful data objects from complex Web pages. 
First, we derive the common structure of the pages by 
comparing similar pages from the same Web site. Second, 
we identify data region covering the descriptions of data 
objects by removing the irrelevant contents from the Web 
page. Third, we partition the nodes belonging to different 
data objects in the data region and construct the well-
formatted and self-explainable XML output files, one for 
each data object. From the resulting output files, it is then 
easy to extract data to fill a database or form a template 
for presentation to the users. The experiments indicate 
that our technique is effective.  
 
1. Introduction 
 

More and more companies manage their business and 
publish their products and services on the Web. 
Collecting and organizing these dynamic information 
could produce the data for various value-added 
applications. Scenario of such applications include: (a) 
collating and comparing the prices and features for 
different products from the Web sites of different 
companies; and (b) listing all products and services 
offered by one or a group of companies. To facilitate such 
applications, we need tools to extract attribute 
information of each product (called data object) within a 
region (called data region) in the product Web page. 
Typically, a product Web page contains one data region, 
and each region lists information of one or more data 
objects. 

The characteristics of such web pages from 
commercial sites are: 
1. There are many diverse sites with pages in different 

formats and styles. 
2. There are many irrelevant components intertwine with 

the descriptions of data objects in Web pages. In order 
to attract the attention of the users, the designers of 
Web sites often include many exciting items as shown 
in Fig. 1 to entice users to browse their pages and stay 
at their sites for as long as possible. Those items 
include ads bar, product category, search and filtering 
panel, navigator bar, copyright statement, feedback 
form etc.  

3. In many Web pages, there are normally more than one 
data object entwined together in a data region. 
Furthermore, the raw source of the Web page for 
depicting the object might be non-contiguous. So it is 
difficult to discover the attributes for each object if they 
are enwound by the description of others. 

4. The order, number and format of attributes involved in 
depicting the same data object may vary greatly in 
different pages from different sites. The available 
systems might fail when they encounter pages from 
new sites. 

 

 
Fig. 1:  The layout of a typical product description page 

In this paper, we call such Web page as shown in Fig. 
1 a complex Web page as it contains multiple types of 
data components. In real applications, what the users 
want from complex Web pages is the description of 
individual data object. It can be derived from the 
partitioning of data region. The users can then properly 
process these separate data objects. 

Based on the above observations, hand-coded rules or 
many reported wrapper systems cannot achieve good 
performance on these complex pages coming from real 
application sites. Since such pages are generated by the 
same dynamic program or carefully maintained template, 
they share similar structure. It is therefore possible to 
unveil such common structure by analyzing pages form 
the same site, and use this knowledge as the basis to 
remove irrelevant contents while retaining relevant object 
information in data region.   

This paper aims to extract and present the details of 
data objects contained in the Web pages using XML 
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format. The output file, containing the corresponding 
description of the raw sources without irrelevant 
components, is well-structured and understandable. It is 
of high quality for human and software agents to process. 
The description of an object just appears in one file, and 
all XML output files have similar structure. So it is easy 
to transform them into tables or templates. 

To achieve our aim of extracting and presenting data 
objects from complex Web pages, the first crucial 
problem is to detect the data region that contains the 
desired objects. Secondly, we need to mine the structure 
of the data region to extract the structure and description 
of individual data object.  

Briefly, the contents of this paper are organized as 
follows. Section 2 introduces related work and Section 3 
presents the overall procedure for detecting and partition 
data objects from complex pages. Sections 4 and 5 
respectively present the algorithms for detecting data 
region and partitioning data objects. The results of our 
experiments and conclusions are respectively presented in 
Sections 6 and 7. 

 
2. Related work 
 

Extracting and integrating information from the Web 
has become more and more important recently because it 
helps to tackle an urgent business problem of collating, 
comparing and analyzing business information from 
multiple sites. Related works to our study include 
Information Extraction (IE), Data Integration and Web 
page cleaning. Many researchers have focused on such 
problems. We briefly discuss some of them below. 

As a series of widely used IE techniques, wrapper 
methods [2] use a program that extracts data from Web 
pages and store them in a database. The wrapper could be 
generated either by human or learned from labeled data, 
both of which are labor intensive and time consuming. 
Moreover, the generalization of wrapper is limited when 
it uses the HTML tags to represent the rule. It also lacks 
the ability to extend to diverse sites with different 
representation styles. 

Some researches try to mine the data in the Web pages 
automatically [1][3][4][5] using unsupervised learning 
approaches such as clustering and grammar induction, or 
heuristic rules. Most of these techniques require well-
formatted tables, and at least two data objects (records) 
appearing in a page. So their function is largely similar to 
table detection and data extraction from tables. But our 
study tries to handle more complicated cases, namely, the 
representation of data objects represented in table, 
(nested) listing and text fragment surrounded by HTML 
tags, and any number of data objects exist in the pages. 

Web page cleaning is another crucial task in Web 
mining. It is used to identify the redundant, useless or 
irrelevant components (e.g., ads bar and category) in 

which users are not interested. Current research used 
priori knowledge or supervised learning to detect frequent 
templates [6], coherent content blocks [7] and site style 
tree [8] tied to this task. Here we emphasize the 
development of an automated approach to detect the 
important portion (data region) rather than to eliminate 
these unimportant components in the complex pages. 

 
3. Our Approaches 
 

The key function involved in our technique is how to 
evaluate the similarity among the components in the 
pages and through which, partition out the descriptions of 
data objects. Obviously, string matching and the “bags of 
words” techniques cannot be used to identify irrelevant 
contents and partitioning objects. Although the task 
seems complex, we rely on the following observations to 
accomplish our goals.  
a. In the same Web site, we observe that pages about the 

objects in the same category, such as products, services 
and member listings, always have similar representation 
structure and similar irrelevant contents. This is 
because in most such cases, they are produced by the 
same dynamic programs or templates that are carefully 
maintained by the developers. Thus we could make use 
of the stable representation structure of the pages that 
we are investigating to identify useful contents. 

b. If we ignore the title of the pages, we expect the data 
region to appear in contiguous area, both visually on 
the screen and in raw source of Web pages. However, 
although the description for each data object is visual 
contiguous, the raw source of such objects might not be 
contiguous. 

c. If we compare similar pages from the same site using 
HTML elements as the unit of measure, we found that 
most of the content differences appear in the data 
region, because that are used to describe different data 
objects with different attribute values. Thus by 
choosing the right content features, we should be able 
to make the structure corresponds to data regions from 
different pages to be different, while identifying 
irrelevant components as similar. This is because the 
frequency of different elements appearing in irrelevant 
components is quite low as compared to that in the data 
regions. 

Suppose that the users used the spiders to download 
all the pages from the special site, or collected all the 
pages from the service providers. We denote this set of 
Web pages as PSET. The steps involved in extracting data 
objects (or product descriptions) are as follows. 
a. We first identify a page Pi that is most similar to the 

user’s query on products or services. 
b. We extract the DOM structures [13] of all the pages 

and use that as the logical structures to compare the 



similarities of Web pages. We simply extract the text 
fragments at the node of the DOM structure. 

c. We use the tree-based kernel [9, 10, 11] to evaluate the 
distance between the Web pages, since the tree-based 
kernel could reflect the similarities in both the structure 
and content. We select any page pj from PSET and 
calculate the kernel K(pi, pj). Because the pages similar 
to pi are created by the same dynamic program or 
template, they should have similar structure and share 
many common tags among the nodes. Thus, it is not 
difficult to setup the threshold τ  for similar page 
selection. The set of the pages similar to pi is: 

 }),(|{ τ>∈= jiSETjSIM ppKPpP  (1) 

d. We calculate the novelty value to be described in next 
section for each subtree in the parse trees of similar 
pages. The novelty of a subtree is defined as the 
weighted sum of all the nodes in the corresponding tree 
and could reflect the degree of repetition among PSIM. 
The data region is the subtree that has the maximal 
novelty (or lowest repeatability) since they have 
distinctive descriptions about different objects. 

e. We detect the structure representation (see Fig. 2) 
within the data region. If there is more than one object 
involved, we need to partition them into different data 
objects and output as different XML files as described 
in Section 5. 

 
4. Detecting Data Region among the Pages 
4.1 Features of data region 

We first generate the HTML parse tree from the raw 
source of the Web page based on the HTML elements 
embedded in the hierarchical structure, where each node 
in this tree is an elements. Data region is then a subtree 
that contains the description of the desired objects. For 
example, the technical features about the vending 
notebooks, a table listing of staff, and stock information 
etc. The characteristic of the data region is that it is 
typically the largest contiguous region in the Web page 
having distinct tokens that are used to depict distinctive 
objects. So we define the concept of repeatability for 
nodes and subtrees in the parse trees in order to identify 
data regions.  

Here we use a converse measure approach, the 
repetition degree, to estimate the novelty. This 
repeatability measure is similar in concept of the kernel 
method. We try to get the most similar node which lies in 
similar context. Here, similar node means that they share 
content tokens and attributes of HTML elements; and 
similar context is simplified as having similar parents. 

4.2 Formalization 

Definition 1:  The content similarity of Nodes n1 and n2 
is defined as the weighted ratio of their shared tokens and 
attribute tags in HTML elements. Supposed that the 
tokens and attributes for n1, n2 are t1, t2, and a1, a2 
respectively, note that the number of tokens and attributes 
are denoted by |.|; and the number of shared attributes is 
s(a1, a2). So the similarity of n1 and n2 is 
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Here, w1 is the weight of the shared attributes and is set to 
1 in our study ||||),( 2121 aaaas  represents the ratio 
of shared attributes or the proportion of common HTML 
tags in nodes n1, n2. )1)||||(log( 21 +tt gives the 
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value when the number of similar tokens is higher. 
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Here t1 and t2 belonging to the same type means that are 
of same semantic type such as number, currency, e-mail 
and so on. 
Definition 2: Supposed that nodes n1 and n2 (not roots) 
are in parse trees T1 and T2 respectively, the Repeatability 
of n1 with respect to T2 is 
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where parent(.) denotes the parent node of n; and w2 
reflects the influence from the context of nodes n1 and n2, 
which is set to 0.5 in our system. 

Two sub-trees have high repeatability if they are similar 
in both contents and context (or structure). 
Definition 3: If ST1 is a subtree in parse tree T1, the 
Repeatability of ST1 with respect to T2 is  
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 (5) 
where rt(T) denotes the function of tree T; and STx is the 
child node of rt(ST1). R(STx, T2) is calculated recursively 
based on Formula (5). w3 (set to 1 here) gives the 
contribution of the repeatability from the children of the 
root. R(ST1, T2) is the average Repeatability of the nodes 
involved.  

Repeatability of subtree and other parsing trees is used 
to identify and remove redundant components in complex 
product pges, as such irrelevant components tend to be 



similar. In order to avoid the cases where some data 
objects sharing many similar descriptions that will 
increase the repeatability of the data region, we will 
consider a group of N (i.e. N = 3-5) pages (called 
window) when evaluating the repeatability of the 
subtrees. We randomly select N pages from PSIM and 
compute the average repeatability of their corresponding 
parse trees as the final evaluation measure as. 
Definition 4  ),()( 1
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The largest subtree ST1 covering the novel data region 
should have the smallest repeatability. So we need to find 
the larger subtree that has smaller repeatability. This 
subtree always contains all nodes about the data objects 
with novel vocabulary. We could use 
(log(|ST1|)+1)/R(ST1) to achieve this objective. The 
subtree ST1 with the largest (log(|ST1|)+1)/R(ST1) will be 
the data region. 
Definition 5:  Data region for parse tree T1 DR(T1) is  
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Note that the use of log(.) function is used to remove the 
influence of very large subtree with many nodes. 

Here we briefly discuss the rationale of the above 
formulae. Supposed that ST1 is the right data region and 
there is a subtree ST2 rooted at the next level of ST1 that 
has the largest (log(|ST2|)+1)/R(ST2). ST2 could then be 
wrongly considered as the spurious data region. However, 
there should be at least one sibling subtree of ST2, has 
small repeatability also. Thus all of them would 
contribute to low repeatability to their parent ST1, and this 
would cause ST1 to have the largest (log(|ST1|)+1)/R(ST1) 
than others. On the contrary, if there is no such sibling 
subtree of ST2 that has low repeatability, it means that 
other nodes in {ST1-ST2} do not contain the description 
about the data objects. Hence ST2 being the data region is 
reasonable.  
 

4.3 Algorithm 

Based on the above discussion, we design an algorithm 
to detect data region as follows. The computation cost is 
N*|T|2, where N is the length of window, |T| is the number 
of nodes in the parse tree. 

GetDataRegion(Current_Parsing_Tree T0, 
Parsing_Tree_Set {T}, window_size N) 

{ 
1. Randomly select N trees T1, …, TN from {T}; 
2. For each (node ni in nodes(T0)) 
3. { 
4.  Calculate R(ni, Tk), k=1, …N; 

5.  R(ni) = 
N

TnR
N

k
ki∑

=1

),(  

6.  Recursively calculate the repeatability for 
subtrees rooted at ni;  

7. } 
8. Return the subtree having the largest  

(log(|ST1|)+1)/R(ST1). 
 
5. Partitioning Objects in Data Regions 
5.1 The Data Object Representation Structure 

There are five typical representation structures for 
objects as shown in Fig. 2. Of course, some pages may 
contain a combination of the above structures, such as a 
horizontal tabular structure (2b) embedded in a listing 
structure (2c) for a person’s CV. But the fundamental 
organization in the data region usually uses only one type 
of representation. This is true especially when the 
contents in the data region are dynamically generated by 
the dynamic programs in most commercial sites. 

 
 CPU HD Screen 
Satellite 1000 PIII 800M 20G 14.1 
Satellite 3000 PIII 1.5G 40G 14.1 

(a) Horizontal tabular structure 

 Satellite 1000 Satellite 3000 

CPU PIII 800M PIII 1.5G 
HD 20G 40G 
Screen 14.1 14.1 

(b) Vertical tabular structure  

Toshiba 1000 
 - CPU PIII 800M 
 - HD 20G 
 - Memory 256M 

- Screen 14.1 

Toshiba 3000 (optional) 
 - CPU PIII 1.5G 
 - HD 40G 
 - Memory 512M 

- Screen 14.1 

(c) (Nested) List  

Toshiba 1000 CPU PIII 800M; HD 20G;  
Memory 256M; Screen 14.1 

(d) Fragment structure 

Toshiba 1000, 256 MB PC2100 DDR RAM up to 
2048MB…. 

(e) Sentence 

Fig. 2: Typical representation of extracted objects 

If a set of objects are represented in many pages with 
different structures, it is difficult to compile some general 



wrappers to extract information from them. Typical 
wrapper rules such as “<B>Country</B> <I>Code</I>” 
induced by CCWRAP [2] from one site would likely to 
fail on other sites since the formats of pages in the 
unknown sites are likely to be different. But if we are able 
to separate data objects belonging to different products, it 
would simplify the task of extracting detailed attributes of 
such objects. 

5.2 The Output Structure 

Actually, not all nodes in the data region have low 
repeatability. Some nodes appearing in the similar 
location among the trees that have high repeatability 
could help to reveal the framework for depicting the 
objects. For example, the nodes such as “CPU” and “HD” 
would repeat again and again and thus have high 
repeatability. We call those nodes Attribute Names about 
the data objects, since they provide the right attribute 
names to tag the descriptions in the other nodes near 
them. If we use XML to output the result of one data 
object, it could be. 

<Object> 
<Title>Satellite 1000</Title> 
<CPU> PIII 800M</CPU> 
<HD>40G</HD> 

</Object> 
Here Title is the object name. We compose the pair of 

attribute name and its description as entity in XML for 
visualization and usage convenience.  If there is only one 
object in the data region, the title might be located in 
HTML tags <title> or <H1>. 

This XML output is self-explainable and flexible. All 
XML output files from these similar pages will have the 
same structure. Many software agents could efficiently 
process it.  

5.3 Algorithm for Object partition 

If there is only one object involved in a data region, 
the transformation from data region to XML output is 
straight-forward. When multiple objects appear in the 
data region with one of the typical organization styles as 
shown in Fig. 2, we employ the divide and conquer 
strategy with heuristic knowledge to detect the number of 
data objects in each data region as follows.  
 Tabular structure. We first use the method reported in 

[12] to regulate the unified cell tagged by 
“Colspan=n” or “Rowspan=n”. We compare the 
coordinates of cells in each column and each row. 
Since the same attributes about different object will be 
aligned either vertically or horizontally in display, we 
could use the coordinate values to determine whether 
it is the horizontal or vertical tabular structure. If the 
average similarity among the nodes in each column is 
greater than that among the nodes in each row, it 

means that it is the vertical representation structure. 
For vertical structure, we simply compare the first 
column with the other columns, and verify whether the 
cells in the first column are about the proper attribute 
names or general attribute values. The steps for 
constructing data objects in horizontal tabular 
structure are similar. 

 (Nested) Listing structure. In order to find out whether 
it contains only one object or a set of neighbouring 
objects, we need to investigate the repetition within 
the data region. If we can find similar sub trees that 
cover most of the data region, they will be used to 
generate different data objects. Otherwise, we 
consider the whole data region as one object and 
hence one XML output file will be generated. 

 Fragment and Sentence structures. We assume that 
such region contains only one object. We parse the 
whole fragment as an entity in an XML output file.  

 Compound structure. It is the combination of the 
above cases. It is usually maintained by human being. 
Fortunately for such intricate type, there is usually 
only one object involved in most cases. Our strategy is 
simply to parse the entire parse tree into an XML file. 

The following is the pseudo codes for partitioning 
objects in the data region. Here t1 is the threshold for 
selecting the candidates of attribute names; and t2 is the 
threshold for differentiating the objects in listing 
structure. The maximal computation happens in the 
detection of direction in the tabular structure. We need to 
compare all cells in each column and each row, so the 
computation cost is |T0|3. 

PartitionObject(Current_Data_Region_Tree T0,  
threshold t1, t2) 

{ 
1. Foreach (node ni in nodes(T0)) 
2. { if (R(ni)) > t1)  
3.    { Tag ni as attribute_name;} 
4. } 
5. if (T0 is tabular structure) 
6. { 
7.     Regulate the table; 
8.     Detect the tabular representation direction -- 

vertical or horizontal; 
9.     Combine the pair of corresponding cell and attribute 

name as an XML elements; 
10.     Parse the first column or row as title; 
11. } 
12. else if (T0 is listing) //one object in this case also 
13. { 
14.     For each (node ni in the second layer nodes of T0) 
15.     { 
16.        Calculate the inner repeatability R(ni, T0); 
17.        if (R(ni, T0) > t2) 
18.            {Parse the subtree rooted at ni as XML output;} 



19.        else //only one object 
20.            {Parse T0 as XML output; break;} 
21.     } 
22. } 
23. else  //other structure 
24. {   Parse T0 as XML output; } 
} 
 
6. Experiment and Discussion 

Our experiments try to detect and partition data object 
from complex pages about products, such as technical 
data for “satellite PC”. This is the questions frequently 
asked in real applications and the users expect 
comprehensive answers involving tabulated results from 
multiple sites. 

As this is a new area, it is hard to find a publicly 
available test corpus to test our technique. Current 
available corpora on faculty category, product category, 
and search snapshot are relatively well-structured with 
simple contents. Moreover, they assume fixed answer 
template. In this research, we expect to extract detailed 
object level information (e.g. personal detail) rather than 
just category level information (faculty category) with 
unknown template structure. For these reasons, we need 
to build our own set of test corpus, comprising more 
abundant contents in product information. We therefore 
collected pages regarding notebooks and computers from 
different retailers and review sites as listed in Table 1. 
From these sites, we selected 100 pages (with at least 10 
pages from each site) that contain detailed descriptions of 
the target objects. About 90% of pages present product 
information in the form of tabular or list structures, while 
the rest present products in the form of text fragments or 
sentences. 

Table 1: Sites for downloading product pages 
http://www.pcworld.com/reviews/chart_test_report 
http://sg.hardwarezone.com/priceguide/cat.php 
http://www. amazon.com  
http://www.gateway.com/home/products 
http://www.csd.toshiba.com/cgi-
bin/tais/pc/pc_home.jsp?comm=ST 
http://list.auctions.shopping.yahoo.com/23336-
category.html?alocale=0us 
http://www.nextag.com/Notebooks~ 
300359z0zBwzmainz5-htm 

For each Web page, we built the parse trees using the 
HTML DOM [13]. The kernel method for retrieving 
similar pages from the same site could achieve quite high 
performance. This is because there are high similarities 
between the pages produced by the same program, and 
they are very dissimilar to other pages that are hand-
coded or derived from different programs. Because of the 
limitation of paper length, here we focus only on 

evaluating the two most critical steps in our framework – 
the quality of the extracted data region; and the accuracy 
of partitioning the objects within the data region. 

6.1 Test of Data Region Extraction 

Since the data region is a subtree of the parse tree in 
the corresponding page, we could evaluate the quality of 
the detected data region in two aspects: (a) whether it 
covers all nodes depicting the data objects; and (b) 
whether it contains irrelevant components. The intuitive 
approach is to compute the overlapping degree between 
the test data region and the ideal data region using recall 
and precision. However, because the cost of missing the 
nodes about the objects is much higher than that of 
covering irrelevant nodes, hence recall is more important 
than precision. Fortunately, missing of data object nodes 
nearly never happens in our testing, although there is 
about an average of 1-6% of nodes that are not relevant to 
the data objects directly. We found that this is caused by 
the definition of data region. For example, if there are 
three nodes a, b, and c in the second layer of the data 
region, two subtrees A, B rooted at a and b are about two 
data objects, but a small subtree C rooted at c contains 
irrelevant content (such as a link to the promotor page). 
We had to include subtree C in the proposed data region 
if we want the subtree to cover A and B. This problem 
only lies in the pages using listing structure, which may 
be manually maintained. They do not have high quality 
structure since the nodes about the data objects are not 
encapsulated and mixed with irrelevant nodes. But these 
irrelevant nodes are likely to be ignored in the following 
object partitioning step.  

We also found that the length and number of nodes in 
the data region are much smaller than that in the original 
Web page (reduce by an average of more than 80%) when 
most irrelevant components are excluded. Here, many 
large subtrees in the parse tree, such as scripts, intrinsic 
data blocks, and visual elements (search panel, 
advertisement bar), are eliminated since they have high 
repeatability.  

6.2 Test on the Partitioning of Data Objects 

In the step of partitioning objects, we divide the data 
regions into XML output, each corresponds to a data 
object. Table 2 gives the statistics of the test corpus in 
terms of the distribution of data representations and the 
number of unique data objects or output files. The 
performance of partitioning objects for each unique data 
object is tabulated in Table 3, which shows an average F1 
of 94 %. Our error analysis reveals the following sources 
of errors. One typical error occurs when analyzing the 
structure of raw table (vertical and horizontal tabular) 
entries involving unknown attributes, which are being 
used to construct spurious data object. Another source of 



errors is that the system mistakenly partition one object 
into many objects, where the content features of grouped 
attributes are very similar to each other. The other major 
source of errors is the nested list structure, as the quirky 
similarity between the sub-trees might mislead 
segmentations.  

Table 2   Data objects distribution 
Type Representation # of pages # of data object 
1 Vertical Tabular 30 126 
2 Horizontal  

Tabular 
30 87 

3 Listing 30 40 
4 Text Fragment 4 7 
5 Sentence 5 5 
6 Combined 0 0 

Table 3: Performance of partitioning data objects 
Tyoe Correc

t 
Incor-
rect 

Miss-
ing 

Pre. 
(%) 

Recall 
(%) 

F1 
(%) 

1 126 5 0 96.2 100 98.1 
2 87 9 0 90.6 100 95.1 
3 34 7 6 82.9 100 90.6 
4 6 3 1 66.6 85.7 79.9 
5 5 5 0 100 100 100 
Avg. 258 29 7 90.8 97.4 94.0 

In general, we found that we are able to extract all data 
from well-structured pages with no missing cases but with 
some incorrect detection. This conclusion is similar to 
that reported in [1] on very simple cases. Also, our 
overall performance of constructing data object is near to 
that of object mining and extraction reported in Omini 
[14], but we could process more complicated structures 
such as nested listing and fragments. 

 
7. Conclusion 
 

Web page content mining is the key technology in 
realizing semantic Web and business intelligence. This 
paper focuses on tackling the problem of detecting and 
partitioning the data objects from complex Web pages, 
where the presentation structure is varied and the useful 
data is surrounded by many irrelevant components. Our 
tests demonstrate that our system is able to correctly 
partition the data objects with over 97% in precision and 
over 90% in recall. 

The main contributions of our research are three-fold. 
First, we define the similarity measure between the nodes 
and construct the Repeatability measure to evaluate the 
novelty of nodes or subtrees appearing in the selected 
page set. These measures can be used to effectively 
reflect the essential features in the irrelevant components, 
data regions, and the description framework of data 
objects. 

Second, we propose an automated approach to identify 
the data region, which is the smallest subtree of the parse 
tree covering the description of all desired data objects. 
Further processing of data region is therefore free from 
the interference from the irrelevant components. 

Third, we investigate the algorithm for partitioning the 
data objects in the data region. This algorithm could 
recompose the non-contiguous description about the 
different objects and produce the independent self-
explainable XML output files for the objects.  

To improve the performance of our system in 
processing complex pages, we need to further improve 
and fine tune techniques for removing irrelevant 
information from these pages, and extracting distinct data 
objects from the data region. We also need to develop 
larger test corpus and methodologies to test our new 
framework. Finally, we would like to use this research as 
the base to develop techniques to compare and reason 
about product information from multiple commercial 
Web sites. 
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